K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

Có: \(3\overrightarrow{MA}+4\overrightarrow{MB}=0\Leftrightarrow3\overrightarrow{MA}+4\overrightarrow{MB}+3\overrightarrow{MC}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MC}+\overrightarrow{CB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{CM}-2\overrightarrow{CN}=0\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{NM}=0\)
Vậy 3 điểm M, N, G thẳng hàng.
b, theo như mình biết thì không có thương hai vec tơ.
                                    

15 tháng 8 2018

1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html

câu 2 cũng chả khác gì cả

15 tháng 3 2023

Gọi G là trọng tâm tam giác ABC. Ta có:

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=3\end{matrix}\right.\) \(\Rightarrow G\left(2;3\right)\)

Do M nằm trên \(\Delta:3x-y+1=0\) nên \(M\left(m;3m+1\right)\). Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG} \right|\) \(=3MG\)

Gọi I là tâm  tỉ cự của 2 điểm A, B ứng với bộ số \(\left(1;2\right)\) \(\Rightarrow\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\). Điều này có nghĩa \(\overrightarrow{IB}=\dfrac{1}{3}\overrightarrow{AB}\). Mà \(\overrightarrow{AB}=\left(3;3\right)\) nên \(\overrightarrow{IB}=\left(1;1\right)\) \(\Rightarrow I\left(1;5\right)\)

Với điểm M, ta có \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\left|\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+2\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\right|\) \(=\left|3\overrightarrow{MI}\right|=3MI\)  (do \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\))

Từ đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|+\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)

\(=3\left(MG+MI\right)\). Ta sẽ tìm GTNN của \(MG+MI\)

Ta thấy \(MG+MI\ge IG\). Ta lại có \(\left(3.2-3+1\right)\left(3.1-5+1\right)< 0\) nên I và G nằm khác phía so với đường thẳng \(\Delta:3x-y+1=0\). Do đó, \(MG+MI=IG\Leftrightarrow\) M nằm trên IG. 

Phương trình đường thẳng IG: \(\dfrac{y-3}{x-2}=\dfrac{5-3}{1-2}=-2\) \(\Leftrightarrow y-3=4-2x\) \(\Leftrightarrow2x+y-7=0\).

M thuộc IG \(\Leftrightarrow2m+\left(3m+1\right)-7=0\) \(\Leftrightarrow m=\dfrac{6}{5}\) \(\Rightarrow M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\)

Vậy điểm \(M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\) thỏa mãn ycbt.

 

 

10 tháng 8 2019

A B C M G H

\(\text{a) }\overrightarrow{AH}=\overrightarrow{AG}+\overrightarrow{GH}=\overrightarrow{AG}+\overrightarrow{BG}=\frac{1}{3}\left(3\overrightarrow{AG}+3\overrightarrow{BG}\right)\\ =\frac{1}{3}\left(\overrightarrow{AA}+\overrightarrow{AC}+\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB}\right)\\ =\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BC}\right)=\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{AC}\right)\\ =\frac{1}{3}\left(2\overrightarrow{AC}-\overrightarrow{AB}\right)=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)

\(\text{b) }\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}=-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\)

\(\text{c) }\overrightarrow{MH}=\overrightarrow{MC}+\overrightarrow{CH}=\frac{1}{2}\overrightarrow{BC}-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =\frac{1}{6}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AB}\)

Giúp e những bài này với ạ1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)b) chứng minh n,h,v thẳng hàng2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung...
Đọc tiếp

Giúp e những bài này với ạ

1) Cho tam giác ABC. GỌI N, H, V là ba điểm thỏa mãn:

\(\overrightarrow{NB} \)-2\(\overrightarrow{NC} \)=\(\overrightarrow{0} \)

\(2\overrightarrow{HC}+\overrightarrow{HA}=\overrightarrow{0} \)

\(\overrightarrow{VA}+\overrightarrow{VB}=\overrightarrow{0} \)

b) chứng minh n,h,v thẳng hàng

2) Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác ABC. Còn M là trung điểm BC.

a) so sánh 2 vecto \(\overrightarrow{HA},\overrightarrow{MO} \)

b) Chứng minh rằng :

i) \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO} \)

ii)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG} \)

3)Cho tam giác ABC và một điểm M thỏa mãn hệ thức \(\overrightarrow{BM}=2\overrightarrow{MC} \). Gọi BN là trung tuyến của tam giác ABC và I là trung điểm BN.

Chứng Minh a)\(2\overrightarrow{MB}+\overrightarrow{MA}+\overrightarrow{MC}=4\overrightarrow{MI} \)

b) \(\overrightarrow{AI}+\overrightarrow{BM}+\overrightarrow{CN}=\overrightarrow{CI}+\overrightarrow{BN}+\overrightarrow{AM} \)

4)Cho tam giác ABC, , lấy các điểm M, N, P sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=6\overrightarrow{NP}-\overrightarrow{NC}=\overrightarrow{PC}+2\overrightarrow{PA}=\overrightarrow{0} \)

a) Biểu diễn \(\overrightarrow{AN} \) qua \(\overrightarrow{AM} \) và \(\overrightarrow{AP} \)

b)Chứng minh M,N,P thẳng hàng

 

0
7 tháng 11 2021

c) \(\overrightarrow{BG}+\overrightarrow{GC}=\overrightarrow{BC}\ne\overrightarrow{GA}\)

d) \(\overrightarrow{GB}+\overrightarrow{GC}=\dfrac{1}{2}\overrightarrow{GM}\ne\overrightarrow{GM}\)