Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gỉa sử \(x^2+1\) chia hết cho 3 .
=> \(x^2+1\in B_{\left(3\right)}\)
=> \(x^2+1\in\left\{\pm3,\pm6,\pm9,\pm12,\pm15,....\right\}\)
=> \(x^2\in\left\{2,-4,5,-7,8,-10,....\right\}\)
Mà \(x\in N\) .
=> \(x^2\in\left\{2,5,8,11,14,...\right\}\)
=> \(x\in\left\{\sqrt{2},\sqrt{5},\sqrt{8},...\right\}\)
Mà \(x\in N\) .
=> \(x\in\left\{\varnothing\right\}\)
Vậy không tồn tại x để \(x^2+1\) chia hết cho 3 hay \(x^2+1\) không chia hết cho 3 với mọi \(x\in N\) .
a/ \(x^4+2x^3+x^2+x^2+2xy+y^2=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(x+y\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x=0\\x+y=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\end{matrix}\right.\)
b/ 72 chia hết 24 nên ta chỉ cần chứng minh \(A=n^3+23n⋮24\)
\(A=n^3+23n=n\left(n^2+23\right)=n\left[n^2-1+24\right]\)
\(=n\left[\left(n-1\right)\left(n+1\right)+24\right]=n\left(n-1\right)\left(n+1\right)+24n\)
\(24n\) hiển nhiên chia hết 24. Xét \(B=n\left(n-1\right)\left(n+1\right)\)
B là tích 3 số nguyên liên tiếp \(\Rightarrow B⋮3\)
n lẻ \(\Rightarrow n=2k+1\Rightarrow B=\left(2k+1\right)2k.\left(2k+2\right)\)
\(B=4k\left(k+1\right)\left(2k+1\right)\)
\(k\left(k+1\right)\) là tích 2 số nguyên liên tiếp \(\Rightarrow\) chia hết cho 2 \(\Rightarrow B⋮8\)
Mà 3;8 nguyên tố cùng nhau \(\Rightarrow B⋮24\Rightarrow A⋮24\)
Nhẩm nghiệm, thấy x=-1 thỉ P=0, phân tích đa thức dần thành nhân tử
P(x)=\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
=\(2x^{^{ }4}+2x^3-9x^3-9x^2+7x^2+7x+6x+6\)
=\(\left(x+1\right)\left(x-2\right)\left(2x^2-5x-3\right)\)
=\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-1\right)\)
Đây là 1 tích trong đó có 3 số nguyên lien tiep.
Trong 3 so nguyen lien tiep co it nhat 1 so chan va 1 so chia het cho 3
=> h cua chung chia het cho 2x3=6.
Vay P chia het cho 6.
Đăng mấy bài này trên đây khó nhận được đáp án lắm! Nên đăng trên một số diễn đàn nhiều pro như:
Diễn đàn Toán học
Diễn Đàn MathScope
.......
Bài 1.
+TH1: Đa thức có bậc là 0
\(f\left(x\right)=a\text{ }\left(a\in R\right)\forall x\in R\)
Theo đề ra: \(16a^2=a^2\Rightarrow a=0\)
Vậy \(f\left(x\right)=0\forall x\in R\)
+TH2: Đa thức có bậc lớn hơn hoặc bằng 1.
Giả sử đa thức có bậc n.
Gọi hệ số cao nhất của đa thức là \(a_n\text{ }\left(a_n\ne0\right)\)
Từ giả thiết, suy ra: \(16a_n^2=\left(2a_n\right)^2\Leftrightarrow16a_n^2=4a_n^2\Leftrightarrow a_n=0\text{ (vô lí)}\)
Vậy điều giả sử sai, hay không có đa thức nào thỏa mãn.
Vậy chỉ có \(f\left(x\right)=0\forall x\in R\) thỏa mãn để bài.
êfvfdfvf
đúng rồi ạ