K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

Phương trình hoành độ giao điểm là:

\(x^2=3x-2\)

=>\(x^2-3x+2=0\)

=>(x-1)(x-2)=0

=>\(\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Khi x=1 thì \(y=1^2=1\)

Khi x=2 thì \(y=2^2=4\)

Vậy: (P) giao (d) tại A(1;1); B(2;4)

bài 2:

a: Thay x=2 vào y=-x+4, ta được:

\(y=-2+2=2=y_A\)

Vậy: A(2;2) thuộc (d)

b: Thay x=2 và y=2 vào y=ax2, ta được:

\(a\cdot2^2=2\)

=>4a=2

=>\(a=\dfrac{1}{2}\)

Khi a=1/2 thì (P): \(y=\dfrac{1}{2}x^2\)

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=-x+4\)

=>\(\dfrac{1}{2}x^2+x-4=0\)

=>\(x^2+2x-8=0\)

=>(x+4)(x-2)=0

=>\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)

Khi x=-4 thì \(y=-\left(-4\right)+4=8\)

Vậy: Giao điểm thứ hai là B(-4;8)

c: O(0;0); A(2;2); B(-4;8)

\(OA=\sqrt{\left(2-0\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(OB=\sqrt{\left(-4-0\right)^2+\left(8-0\right)^2}=4\sqrt{5}\)

\(AB=\sqrt{\left(-4-2\right)^2+\left(8-2\right)^2}=6\sqrt{2}\)

Vì \(OA^2+AB^2=OB^2\)

nên ΔAOB vuông tại A

=>\(S_{AOB}=\dfrac{1}{2}\cdot AB\cdot AO=\dfrac{1}{2}\cdot2\sqrt{2}\cdot6\sqrt{2}=12\)

17 tháng 7 2021

a,mấy đoạn dấu : dấu+ trong đề hơi khó nhìn

\(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(P=\left[\dfrac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left(\dfrac{\sqrt{x}-1+2}{x-1}\right)\)

\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{x-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}:\dfrac{1}{\sqrt{x}-1}=\dfrac{x-1}{\sqrt{x}}\)

b, \(P>0=>\dfrac{x-1}{\sqrt{x}}>0=>x-1>0< =>x>1\)(tm)

Vậy \(x>1\) .....

 

\(\)

12 tháng 9 2021

=\(\left(3\sqrt{3}-3\sqrt{3}+2\sqrt{6}\right):3\sqrt{3}\)
\(=1-\dfrac{\sqrt{6}}{2}+\dfrac{2\sqrt{2}}{3}\)
=\(\dfrac{6}{6}-\dfrac{3\sqrt{6}}{6}+\dfrac{4\sqrt{2}}{6}\)
=\(\dfrac{6+\sqrt{6}}{6}\)

NV
28 tháng 8 2021

20.

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow P=\sum\dfrac{1}{a^3+b^3+1}\le\sum\dfrac{1}{ab\left(a+b\right)+1}=\sum\dfrac{abc}{ab\left(a+b\right)+abc}=\sum\dfrac{c}{a+b+c}=1\)

21.

Đề bài sai, biểu thức này ko tồn tại min hay max (nó chỉ tồn tại khi x;y;z là số thực không âm. Khi đó min P xảy ra tại \(\left(x;y;z\right)=\left(\dfrac{1}{2};\dfrac{1}{2};0\right)\) và hoán vị)

22. 

Đề bài sai, biểu thức không tồn tại min. Nó chỉ tồn tại khi có thêm điều kiện x;y;z là độ dài 3 cạnh của 1 tam giác (em cứ thay giá trị \(x=2;y=1.9999;z=8.0001\) vào tính giá trị P sẽ hiểu tại sao đề sai)

21 tháng 6 2021

2b)

Áp dụng BĐT bunhiacopxki có:

\(\left(1+1\right)\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\)

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4\right)\ge\dfrac{\left(x+y\right)^4}{4}\Leftrightarrow x^4+y^4\ge\dfrac{1}{8}.\left(x+y\right)^4\)

Dấu "=" xảy ra khi x=y

3)

Áp dụng bđt Holder có:

\(\left(x^3+y^3+z^3\right)\left(1+1+1\right)\left(1+1+1\right)\ge\left(x+y+z\right)^3\)

\(\Leftrightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\)

Dấu "=" xảy ra khi x=y=z

 

21 tháng 6 2021

3)(Nếu không dùng Holder)

Với x,y,z >0, ta có bđt sau:\(2x^3+2y^3+2z^3\ge xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)\) (1)

Thật vậy (1)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)+\left(y+z\right)\left(y^2-yz+z^2\right)-yz\left(y+z\right)+\left(z+x\right)\left(z^2-zx+x^2\right)-zx\left(x+z\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^2+\left(y+z\right)\left(y-z\right)^2+\left(z+x\right)\left(z-x\right)^2\ge0\) (lđ)

Áp dụng AM-GM có:

\(x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow\dfrac{2\left(x^3+y^3+z^3\right)}{3}\ge2xyz\) (2)

Từ (1) và (2), cộng vế với vế \(\Rightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge xy\left(x+y\right)+yz\left(x+z\right)+xz\left(x+z\right)+2xyz\)

\(\Leftrightarrow\dfrac{8}{3}\left(x^3+y^3+z^3\right)\ge\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow8\left(x^3+y^3+z^3\right)\ge3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Leftrightarrow9\left(x^3+y^3+z^3\right)\ge x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)^3\)

\(\Rightarrow x^3+y^3+z^3\ge\dfrac{1}{9}\left(x+y+z\right)^3\) (đpcm)

9 tháng 10 2021

\(3,\\ a,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}=12\\ \Leftrightarrow\sqrt{x+5}=4\Leftrightarrow x+5=16\Leftrightarrow x=11\left(tm\right)\\ b,ĐK:x\in R\\ PT\Leftrightarrow\left|x-5\right|=6\Leftrightarrow\left[{}\begin{matrix}x-5=6\\5-x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-1\end{matrix}\right.\)

12 tháng 12 2021

khi bài toán bắt ta chứng minh một hình gì đó mà thiếu một ta hay một đường thẳng...

12 tháng 12 2021

bn giải thik rõ hơn đc k ạ !!!

 

1 tháng 7 2021

lần sau bạn chụp thẳng ra nha,đùng chụp ngang