Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Gọi 3 số đó lần lượt theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)là a, b, c (a,b,c>0) => A=a+b+c
=> \(a:b:c=\frac{2}{5}:\frac{3}{4}:\frac{1}{6}=\frac{24}{60}:\frac{45}{60}:\frac{10}{60}=24:45:10\)
\(\Rightarrow\frac{a}{24}=\frac{b}{45}=\frac{c}{10}\)
\(\Rightarrow\left(\frac{a}{24}\right)^2=\left(\frac{b}{45}\right)^2=\left(\frac{c}{10}\right)^2\)\(\Rightarrow\frac{a^2}{24^2}=\frac{b^2}{45^2}=\frac{c^2}{10^2}=\frac{a^2+b^2+c^2}{24^2+45^2+10^2}\)(Theo TCDTSBN)
\(=\frac{24309}{2701}=9\)
=> \(\hept{\begin{cases}a^2=9.24^2=\left(3.24\right)^2\\b^2=9.45^2=\left(3.45\right)^2\\c^2=9.10^2=\left(3.10\right)^2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3.24=72\\b=3.45=135\\c=3.10=30\end{cases}}\)
=> A= a+b+c = 72+135+30=237
a, Tích của 2 số hữu tỉ
\(\frac{7}{20}\cdot\left(-1\right)=-\frac{7}{20}\)
b, Thương của 2 số hữu tỉ
\(1:-\frac{20}{7}=1\cdot-\frac{7}{20}=-\frac{7}{20}\)
c, Tổng của 1 số hữu tỉ dương và 1 số hữu tỉ âm
\(\frac{3}{5}+\frac{-19}{20}=\frac{12}{20}+\frac{-19}{20}=-\frac{7}{20}\)
d, Tổng của 2 số hữu tỉ âm trong đó 1 số là - 1/5
\(-\frac{1}{5}+\frac{-3}{20}=\frac{-4}{20}+\frac{-3}{20}=-\frac{7}{20}\)
Mình giải cách này hơi giống của lớp 5 nên bạn thông cảm nhé !
Gọi ba số hạng lần lượt là a, b, c, và ta giả sử \(a=\frac{3}{5}\)hay 0,6 phần, \(b=1\frac{3}{4}\)hay 1,75 phần, \(c=0,9\)phần ( Vì cả ba tỉ lệ lần lượt với \(\frac{3}{5};1\frac{3}{4};0,9\)), ta có:
\(a=130\div\left(0,6+1,75+0,9\right)\times0,6=24\)( Dạng tổng số phần của lớp 5 )
\(b=130\div\left(0,6+1,75+0,9\right)\times1,75=70\)
\(c=130\div\left(0,6+1,75+0,9\right)\times0,9=36\)
Vậy 130 viết dưới dang tổng 3 số hạng là 24, 70, 36
Mình không chắc cách làm nên bạn có thể làm cách khác nhé !