Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A-B=2m^3+3m^3-4mn^2
TH1
Nếu m > n. Đặt m=n+x
óA-B=2(n+x)^3+3m^3-4(n+x)n^2
óA-B=2(n^3+3n^2x+2nx^2+x^3)=3m^3-4n^3-4n^2x
óA-B=n^3+2n^2x+6nx^2+2x^3>0
Vậy A>B
TH2
Nếu m < n. Đặt n=m+y
óA-B=2m^3+3(m+y)^3-4m(m+y)^2
óA-B=2m^3+3(m^3+3m^2y+3my^2+y^3)-4m^3-8m^2y-4my^2
óA-B=m^3+m^2y+5my^2+3y^3> 0
Vậy A > B
a) Thay m = -1 và n = 2 ta có:
3m - 2n = 3(-1) -2.2 = -3 - 4 = -7
b) Thay m = -1 và n = 2 ta được
7m + 2n - 6 = 7.(-1) + 2.2 - 6 = -7 + 4 - 6 = -9.
Xét trường hợp thoy:))
Xét \(m>n\).Đặt \(m=n+k\) với \(k\in N\)
Xét \(A-B=2m^3+3n^3-4mn^2\)
\(A-B=2\left(n+k\right)^3+3n^3-4\left(n+k\right)n^2\)
\(A-B=2n^3+6n^2k+6nk^2+2k^3+3n^3-4n^3-4n^2k\)
\(A-B=n^3+2n^2k+6nk^2+2k^3>0\)
Xét \(m< n\).Đặt \(n=m+k\)
Ta có:
\(A-B=2m^3+3n^3-4mn^2\)
\(A-B=2m^3+3\left(m+k\right)^3-4m\left(m+k\right)^2\)
\(A-B=2m^3+3m^3+9m^2k+9mk^2+3k^3-4m^3-8m^2k-4mk^2\)
\(A-B=m^3+m^2k+5mk^2+3k^2>0\)
Xét \(m=n\)
Ta có:
\(A=2m^3+3n^3=2m^3+3m^3=5m^3\)
\(B=4mn^2=4mm^2=4m^3\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
b: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow n\in\left\{0;-1;1\right\}\)
Ta có: 3 n 3 + 10 n 2 - 5 = 3 n + 1 n 2 + 3 n - 1 - 4
Để phép chia đó là chia hết thì 4 ⋮ 3n + 1⇒ 3n + 1 ∈ Ư(4)
3n + 1 ∈ {-4; -2; -1; 1; 2; 4}
3n + 1 = -4⇒ 3n = -5⇒ n = ∉ Z : loại
3n + 1 = -2⇒ 3n = -3⇒ n = -1 ∈ Z
3n + 1 = -1⇒ 3n = -2⇒ n = ∉ Z : loại
3n + 1 = 1⇒ 3n = 0⇒ n = 0 ∈ Z
3n + 1 = 2⇒ 3n = 2⇒ n = ∉ Z : loại
3n + 1 = 4⇒ 3n = 3⇒ n = 1 ∈ Z
Vậy n ∈ {-1; 0; 1} thì 3 n 3 + 10 n 2 - 5 chia hết cho 3n + 1.
Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên.
--------------------------------------...
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên
Ta có: (ax+b)(cx+d) = acx2 + (ad + bc)x + bd (1)
a = c = ±1 , (1) trở thành: x2 + ±(b+d)x + bd
Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m
Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72
Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0
Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17
Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27
k mk nhá!!!ố~ồ
Đáp án này trên yahoo nha
Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x^2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên.
--------------------------------------...
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên
Ta có: (ax+b)(cx+d) = acx^2 + (ad + bc)x + bd (1)
a = c = ±1 , (1) trở thành: x^2 + ±(b+d)x + bd
Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m
Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72
Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0
Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17
Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...
Tích nha
Ta có:
\(A-B=2m^3+3n^3-4mn^2\)
TH1: Nếu m > n. Đặt m = n + x
\(A-B=2\left(n+x\right)^3+3n^3-4\left(n+x\right)n^2\)
\(A-B=2\left(n^3+3n^2x+3nx^2+x^3\right)+3n^3-4n^3-4n^2x\)
\(A-B=2n^3+6n^2x+6nx^2+2x^3+3n^3-4n^3-4n^2x\)
\(A-B=n^3+2n^2x+6nx^2+2x^3>0\)
\(\Rightarrow A>B\)
TH2: Nếu m < n. Đặt n = m + y
Làm tương tự ra được A > B