K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

Giải bài 34 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Vẽ hình chữ nhật ABCD với các trung điểm các cạnh là M, N, P, Q.

Vẽ tứ giác MNPQ

Giải bài 34 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Lại có: ABCD là hình chữ nhật nên AC = BD (3)

Từ (1), (2) và (3) suy ra: MN = PQ = MQ = NP

=> Tứ giác MNPQ là hình thoi.

+ Ta có:

∆ BMN = ∆ IMN; ∆ INP = ∆ CNP, ∆ AMQ= ∆IMQ, ∆ DPQ= ∆IPQ

Giải bài 34 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Như vậy diện tích hình thoi bằng nửa tích hai đường chéo.

21 tháng 4 2017


bai-34

Cho hình chữ nhật ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC, CD, DA.
* Chứng minh MNPQ là hình thoi

Ta có MN = PQ = 1/2BD

NP = MQ = 1/2 AC

Mà AC = BD

⇒ MN = NP = PQ = QM nên tứ giác MNPQ là hình thoi (Có 4 cạnh bằng nhau)

* Theo bài 33 (các em tham khảo ở trên), ta có SMNPQ = SABNQ và SMNPQ = SNQDC

Vì vậy SABCD = SABNQ + SNQDC = 2SMNPQ

* Ta có SABCD =2SMNPQ ⇒ SMNPQ = 1/2SABCD = 1/2AB.BC = 1/2NQ.MP

21 tháng 4 2017

Vẽ hình chữ nhật ABCD với các trung điểm các cạnh M, N, P, Q.

Vẽ tứ giác MNPQ

Ta có MN = PQ = \(\dfrac{1}{2}\)BD

NP = MQ = \(\dfrac{1}{2}\) AC

Mà AC = BD

Nên tứ giác MNPQ là hình thoi vì có bốn cạnh bằng nhau.

Dễ dàng chứng minh rằng : ∆AMN = ∆INM , ∆BPN = ∆NIP

∆PCQ = ∆IQP, ∆DMQ = IQM

Do đó

SMNPQ = \(\dfrac{1}{2}\) SABCD mà SABCD = AB. AD = MP. NQ

Vậy SMNPQ = \(\dfrac{1}{2}\) MP.NQ



30 tháng 5 2018

Giải bài 33 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Cho hình thoi ABCD, vẽ hình chữ nhật có một cạnh là đường chéo BD, cạnh kia bằng IC (bằng nửa AC).

Khi đó diện tích của hình chữ nhật BDEF bằng diện tích hình thoi ABCD.

Giải bài 33 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

Từ đó suy ra cách tính diện tích hình thoi: Diện tích hình thoi bằng nửa tích hai đường chéo.

21 tháng 4 2017

Giải bài 34 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8Giải bài 34 trang 128 Toán 8 Tập 1 | Giải bài tập Toán 8

21 tháng 4 2017

Cho hình thoi MNPQ, vẽ hình chữ nhật có một cạnh là đường chéo MP, cạnh kia bằng IN ( IN= 12 NQ).

Khi đó diện tích của hình chữ nhật MPBA bằng diện tích hình thoi MNPQ.

Thật vậy SMPBA = MP. IN = MP. 12 NQ

= 12 MP. NQ = SMNPQ

10 tháng 2 2017

Cho hình thoi MNPQ, vẽ hình chữ nhật có một cạnh là đường chéo MP, cạnh kia bằng IN ( IN=  NQ).

Khi đó diện tích của hình chữ nhật MPBA bằng diện tích hình thoi MNPQ.

Thật vậy SMPBA = MP. IN = MP.  NQ

                                          =  MP. NQ = SMNPQ

10 tháng 2 2017

Cho hình thoi MNPQ, vẽ hình chữ nhật có một cạnh là đường chéo MP, cạnh kia bằng IN ( IN=  NQ).

Khi đó diện tích của hình chữ nhật MPBA bằng diện tích hình thoi MNPQ.

Thật vậy SMPBA = MP. IN = MP.  NQ

                                          =  MP. NQ = SMNPQ

1 tháng 2 2017

24 cm2

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Để mNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

Để MNPQ là hình thoi thì MN=MQ

=>AC=BD

c: BD=3/2*AC=30cm

=>MQ=BD/2=15cm; MN=AC/2=10cm

SMNPQ=15*10=150cm2

15 tháng 2 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử ta có hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Ta cắt hình thoi theo đường chéo AC ta được 2 tam giác.

Lấy AC làm một cạnh hình chữ nhật. Cắt tam giác BAC theo đường BO ta được hai tam giác ghép lại ta có hình chữ nhật.