Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy rằng
- Đường thẳng thứ nhất giao với đường thẳng còn lại, do đó có giao điểm.
- Đường thẳng thứ hai giao với đường thẳng còn lại, do đó có giao điểm.
...
- Đường thẳng thứ giao với 2 đường thẳng còn lại, do đó có 2 giao điểm.
- Đường thẳng thứ giao với đường thẳng còn lại, do đó có 1 giao điểm.
Do tổng số giao điểm là
Ta có
=>n(n−1)2=1128
<=>n(n−1)=2256
<=>n(n−1)=48.47
Vậy n=48
Do đó có 48 đường thẳng.
b) Giả sử số giao điểm là 2017.
Khi đó ta có
=>n(n−1)=2017.2
<=>n(n−1)=4034
<=>n(n−1)=2.2017
Vậy không thể có số giao điểm là 2017.
- Lần sau bạn đăng bài này lên lớp 8 nhé !
- Ta có công thức tính số giao điểm của n đường thẳng, trong đó bất cứ hai đường thẳng nào cũng cắt nhau:
T=\(\dfrac{n\left(n+1\right)}{2}\) (T là số giao điểm, n là số đường thẳng).
- Thay T=1128 vào T=\(\dfrac{n\left(n+1\right)}{2}\) , ta được:
\(\dfrac{n\left(n+1\right)}{2}\)=1128
=>n(n+1)=2256
=>n2+n-2256=0
=>n2+48n-47n-2256=0
=>n(n+48)-47(n+48)=0
=>(n+48)(n-47)=0
=>n+48=0 hay n-47=0
=>n=-48 hay n=47.
- Vì n>0 nên chọn n=47.
- Vậy số đường thẳng cần tìm là 47.
a) Ta thấy rằng
- Đường thẳng thứ nhất giao với n−1 đường thẳng còn lại, do đó có n−1 giao điểm.
- Đường thẳng thứ hai giao với n−2 đường thẳng còn lại, do đó có n−2 giao điểm.
...
- Đường thẳng thứ n−2 giao với 2 đường thẳng còn lại, do đó có 2 giao điểm.
- Đường thẳng thứ n−1 giao với đường thẳng còn lại, do đó có 1 giao điểm.
Vậy tổng số giao điểm là
(n−1)+(n−2)+⋯+2+1=n(n−1)/2
Do tổng số giao điểm là 1128 nên ta có
n(n−1)2=1128
<−>n(n−1)=2256
<−>n(n−1)=48.47
Vậy n=48
Do đó có 48 đường thẳng.
b) Giả sử số giao điểm là 2017. Khi đó ta có
n(n−1)=2017.2
<−>n(n−1)=4034
<−>n(n−1)=2.2017
Ta thấy vế trái là tích của hai số tự nhiên liên tiếp, trong khi bên vế phải lại ko phải là tích 2 số tự nhiên liên tiếp.
Vậy không thể có số giao điểm là 2017.
a) Vì 2 đường thẳng nào cũng cắt nhau nên 1 đường thẳng sẽ cắt 2015 đường còn lại mỗi đường 1 lần => Có 2016 . 2015 giao điểm.
Nhưng mỗi giao điểm ở đây được tính 2 lần nên sẽ có ( 2016 . 2015 ) / 2 = 2031120 ( giao điểm )
b) Tương tự câu a ta có n . ( n - 1 ) / 2 = 1128
=> n ( n - 1) = 2256 => n = 48
Vì bất cứ hai đường thẳng nào cx cắt nhau, ko có ba đường thẳng nào cùng đi qua một điểm.ta có công thức:n(n+1)/2.
a)từ giả thiết :n(n+1)/2=1128
n(n+1)=1128*2=2256
suy ra n=47
b)Không.Vì không có n9n+10 nào =2017*2=4034
a,Có n điểm đường thẳng trong đó bất cứ hai đường thẳng nào cũng cắt nhau, không có 3 đường thẳng nào đồng quy
=>Số giao điểm là:
n . (n-1) : 2=1128
n . (n-1)= 2256=48.47
=> n = 48
Vậy có tất cả 48 đường thẳng
b, không thể vì ko AD đc vào công thức \(\frac{n.\left(n-1\right)}{2}\)
học tốt
Bạn Nguyễn Ngọc Linh có thể trả lời lại phần b được không ạ. Bạn viết tắt mình không hiểu.
\(1\)đường thẳng sẽ tạo \(n-1\)giao điểm với các đường thẳng còn lại.
\(n\)đường thẳng sẽ tạo \(n\left(n-1\right)\)giao điểm.
Do số giao điểm được tính \(2\)lần nên số giao điểm thực tế là \(\frac{n\left(n-1\right)}{2}\).
Ta có: \(\frac{n\left(n-1\right)}{2}=780\Rightarrow n=40\)
Số giao điểm của n đường thẳng là \(C^2_n=\dfrac{n\left(n-1\right)}{2}\)
Theo đề, ta có: \(\dfrac{n\left(n-1\right)}{2}=1128\)
=>n(n-1)=2256
=>\(n^2-n-2256=0\)
=>\(\left[{}\begin{matrix}n=48\left(nhận\right)\\n=-47\left(loại\right)\end{matrix}\right.\)
Vậy: n=48