Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, n, n+1 và n+2 là ba số liên tiếp
Vậy có ít nhất 1 số chia hết cho 2 và 3
Tích có số chia hết cho 2,3 thì cũng chia hết cho 2,3
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2
8n + 193 chia hết 4n + 3
=> 8n + 6 + 187 chia hết 4n + 3
=> 2( 4n + 3 ) + 187 chia hết 4n + 3
=> 187 chia hết cho 4n+ 3
=> 4n thuộc Ư( 187 ) và n thuộc N
Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
4n + 3 = 1 ( loại )
4n + 3 = 11 => n=2
4n + 3 = 17 ( loại )
4n + 3 = 187 => n = 46
vậy n= 2 hoặc 46
8n + 193 chia hết 4n + 3
=> 8n + 6 + 187 chia hết 4n + 3
=> 2( 4n + 3 ) + 187 chia hết 4n + 3
=> 187 chia hết cho 4n+ 3
=> 4n thuộc Ư( 187 ) và n thuộc N
Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
4n + 3 = 1 ( loại )
4n + 3 = 11 => n=2
4n + 3 = 17 ( loại )
4n + 3 = 187 => n = 46
vậy n= 2 hoặc 46
n2 chia cho chia 3 dư 1 thì ta chứng minh (n2-1) chia hết cho 3
Vì a là số nguyên tố > 3 nên a có dạng a = 3k + 1 hoặc a = 3k + 2 \(\left(k\inℕ\right)\)
-Nếu a = 3k + 1 thì \(\left(a-1\right)\cdot\left(a+4\right)=\left(3k+1-1\right)\left(3k+1+4\right)=3k\left(3k+5\right)\)
TH1: k là số chẵn thì \(k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
TH2: k là số lẻ thì \(3k+5⋮2\Rightarrow k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
-Nếu a = 3k + 2 thì \(\left(a-1\right)\left(a+4\right)=\left(3k+2-1\right)\left(3k+2+4\right)=\left(3k+1\right)\left(3k+6\right)\)
Chứng minh tương tự như trên ta cũng được \(\left(a-1\right)\left(a+4\right)⋮6\)
Vì 6n+7 chia hết cho 2n-1
=> (6n+7):(2n-1)=1
6n+7=1.(2n-1)=2n-1
6n+7+1=2n
6n+8=2n
8=2n-6n=(-4)n
n=8:(-4)=-2
toán nâng cao à?
Đúng rồi, bn giải nhanh giúp mk nha!