Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
Đáp số: n=28.
1) Biet rang 996 va 632 khi chia cho n deu du 16 . Tim n.
2) Chung minh rang 7n + 10 va 5n + 7 la hai so nguyen to cung nhau ( n thuoc N )
3) Biet rang 7a + 2b chia het cho 13 (a,b thuoc N) . Chung minh rang 10a + b cung chia het cho 13
Được cập nhật Bùi Văn Vương
1)Số 996 chia cho n dư 16 nên 996−16=980 chia hết cho n và n>16)
Số 632 chia cho n dư 16 nên 632−16=616 chia hết cho n và n>16
Do đó, n là ước chung của 980 và 616.
Có 980=22.5.72 và 616=23.7.11 nên ƯCLN (980;616)=22.7=28.
Suy ra n là ước của 28.
Mà n>16 nên n=28.
a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3
b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm
K MINH NHA!...............
Nếu n là chẵn thì n^2 chẵn và n+3 lẻ => n^2-(n+3) là lẻ => n^-n+3 không chia hết cho 2( n khác 0 vì n thuộc n sao )
Nếu n là lẻ thì n^2 là lẻ và n+3 chẵn => n^2-(n+3) là lẻ => n^2-(n+3) không chia hết cho 2
Để chứng minh , ta xét 2 trường hợp
TH1: n là số lẻ
=> (n+8)(n+3)=lẻ x chẵn .( Vì số lẻ cộng với số chẵn ta đc số lẻ , số lẻ cộng với số lẻ ta đc một số chẵn)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(1)
TH2 : n là số chẵn
=> (n+8)(n+3)= chẵn x lẻ .(Vì số chẵn cộng với số chẵn ta đc số lẻ , số chẵn cộng với số lẻ ta đc một số lẻ)
Mà số chẵn nào cũng chia hết cho 2
=> (n+8)(n+3) chia hết cho 2.(2)
Từ (1) và (2)
=>(n+8)(n+3) luôn chia hết cho 2 với mọi n thuộc N
Ta có A = 1 + 2 +3 + ... + n
= n(n+1) : 2
lại có n(n+1) là tích chẵn
=> n(n+1) \(⋮\)2
=> a \(⋮\)2
=> a chẵn
mặt khác, 2n + 1 \(⋮̸\)2
=> 2n + 1 là số lẻ
=> b lẻ
Ngoài ra ta nhận thấy ƯCLN của 1 số lẻ và 1 số chẵn = 1
=> chúng là 2 số nguyên tố cùng nhau
tương tự như vậy a và b là 2 số nguyên tố cùng nhau (đpcm)
n2+n+1=n(n+1)+1
Vì vì n(n+1) là tích của hai số tự nhiên liên tiếp nên tích của chúng sẽ có chữ số tận cùng là 0,2,6 nên n(n+1)+1 sẽ có chữ số tận cùng là 1,3,7 không chia hết cho 4 vì các số sau đều là số lẻ. Tương tự, không chia hết cho 5, vì có chữ số tận cùng không phải 0,5 nén không chia hết cho 5.
Nhớ K MÌNH NHA!!!!!!!!!!!!!!