K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2021

\(\text{f(x)}\)\(\text{>0}\)\(\text{⇔}\)\(\text{2x}\)2\(\text{-3x+1}\)\(>0\)\(\left\{{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)

x(;\(\dfrac{1}{2}\))(1;+)

 

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$

hay $x\in (1;2)$

Đáp án D

AH
Akai Haruma
Giáo viên
2 tháng 3 2019

Lời giải:

\(f(x)>0\Leftrightarrow 2x-4>0\Leftrightarrow 2x>4\Leftrightarrow x>2\) hay \(x\in (2;+\infty)\)

Suy ra khẳng định $a$ đúng

17 tháng 12 2022

(x+1)(x-m)<=0

TH1: m>=0

=>-1<=x<=m

=>m>5

TH2: m<0

(x+1)(x-m)<=0

*Trường hợp 1: x+1>=0 và x-m<=0

=>-1<=x<=m

=>m<0

=>\(m\in\varnothing\)

*TH2: x+1<=0và x-m>=0

=>x<=-1 và x>=m

=>m>5

NV
2 tháng 4 2020

\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Do đó các câu c, f cũng không tồn tại m thỏa mãn

b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m

Kết hợp 3 TH \(\Rightarrow m\ge2\)

NV
2 tháng 4 2020

d/ Tương tự như câu b, nhưng

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m>3\)

Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)

e/

TH1: \(\Delta\le0\Rightarrow2\le m\le3\)

TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)

\(\Rightarrow m\ge2\)