K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

*Chứng minh thuận:

Nối DE

xét ∆ ABC và  ∆ AED ta có:

AB = AE (gt)

AD = BC (gt)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Điểm C chuyển động trên nửa đường tròn đường kính AB thì điểm D luôn nhìn đoạn AE cố định dưới một góc bằng 90 ° nên điểm D nằm trên nửa đường tròn đường kính AE nằm trong nửa mặt phẳng bờ AE chứa nửa đường tròn đường kính AB

Chứng minh đảo:

Trên nửa đường tròn đường kính AE lấy điểm D’ bất kì ,đường thẳng AD’ cắt nửa đường tròn đường kính AB tại C’.Nối ED’ ,BC’

Xét  ∆ AD’E và ∆ BC’A ta có:

AB = AE (gt)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra:  ∆ AD’E =  ∆ BC’A ⇒ AD’ = BC’

Vậy khi điểm C chạy trên nửa đường tròn đường kính AB thì quỹ tích điểm D là nửa đường tròn đường kính AE

Gọi O và O’ lần lượt là tâm hai đường tròn đường kính AB và AE ,M là giao điểm thứ hai của hai đường tròn

Vì AB = AE nên ta có : OA = OM = O’A = O’M

góc (BAE) = 90 °

Suy ra tứ giác AOMO’ là hình vuông

Diện tích phần chung của hai nửa đường tròn bằng diện tích hai quạt tròn có chung AmM trừ đi diện tích hình vuông

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

21 tháng 11 2022

Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

 

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔADB vuông tại A có AC là đường cao

nên \(AD^2=DB\cdot DC\)

b: Xét (O) có

EC là tiếp tuyến

EA là tiếp tuyến

Do đó: EC=EA
=>ΔECA cân tại C

=>góc ECA=góc EAC

\(\Leftrightarrow90^0-\widehat{ECA}=90^0-\widehat{EAC}\)

hay \(\widehat{EDC}=\widehat{ECD}\)

=>ΔECD cân tại E

=>ED=EC
mà EC=EA
nên EA=ED

hay E là trung điểm của AD

27 tháng 1 2022

có hình không bạn

28 tháng 12 2021

Hình tự vẽ

a) BF ; AE tiếp tuyến 

=> \(\widehat{BFE}=\widehat{EFB}=90^{\text{o}}\)

Ta có \(\widehat{BFE}+\widehat{EFB}=180^{\text{o}}\)

=> FB//AE 

b) Xét tam giác vuông ACE ; ACH 

AC2 = AE2 + CE2 = AH2 + HC2 

=> AE = AH (CE = HC)

Tương tự ta có FB = HB

lại có \(\widehat{ACB}=90^{\text{o}}\left(\text{thuộc (I) ; đường kính AB}\right)\)

Xét tam giác vuông ABC vuông tại C ; đường cao AH có

AH.AB = CH2 = AE.FB 

28 tháng 12 2021

c) Ta có \(\widehat{ECF}=\widehat{ECA}+\widehat{ACB}+\widehat{FCB}=2\widehat{ACB}=180^o\)

(Vì \(\widehat{ECA}=\widehat{ACH};\widehat{HCB}=\widehat{FCB}\))

=> E;C;F thẳng hàng 

mà EC = CF 

=> C trung điểm EF

mà I trung điểm AB

=> CI đường trung bình hình thang EABF

=> EA//CI//FB

=> \(\widehat{ECI}=90^{\text{o}}\)

=> EF tiếp tuyến (I) 

20 tháng 9 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

b) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

c) Ta có: AC = CM, BD = DM nên AC.BD = CM.MD

ΔCOD vuông tại O, ta có:

CM.MD = OM2 = R2 (R là bán kính đường tròn O).

Vậy AC.BD = R2 (không đổi).