K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

a, MPHQ là hình chữ nhật => MH = PQ

b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA

c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của  O 2

Tương tự PQ cũng là tiếp tuyến ( O 1 )

5 tháng 11 2021

giups em voi a

 

a: góc CDH=1/2*sđ cung CH=90 độ

góc CEH=1/2*sđ cung CH=90 độ

góc ACB=1/2*180=90 độ

Vì góc CDH=góc CEH=góc DCE=90 độ

nên CDHE là hình chữ nhật

b: ΔCHA vuông tại H có HD là đường cao

nên CD*CA=CH^2

ΔCHB vuông tại H

mà HE là đường cao

nên CE*CB=CH^2=CD*CA

CDHE là hình chữ nhật

=>góc CDE=góc CHE=góc CBA

=>góc ADE+góc ABE=180 độ

=>ABED nội tiếp

a: góc HIB=1/2*sđ cung HB=90 độ

=>HI vuông góc AB

góc CKH=1/2*sđ cung CH=90 độ

=>HK vuông góc AC

góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hình chữ nhật

=>góc AIK=góc AHK=góc C

=>góc KIB+góc KCB=180 độ

=>KIBC nội tiếp

b: góc O1IK=góc O1IH+góc KIH

=góc O1HI+góc KAH

=góc HAC+góc HCA=90 độ

=>IK làtiếp tuyến của (O1)

góc O2KI=góc O2KH+góc IKH

=góc O2HK+góc IAH

=góc HAB+góc HBA=90 độ

=>IK là tiếp tuyến của (O2)

1: góc ACB=1/2*sđ cungAB=90 độ

góc CMH=góc CNH=1/2*sđ cung CH=90 độ

góc CMH=góc CNH=góc MCN=90 độ

=>CMHN là hình chữ nhật

2: CMHN là hình chữ nhật

=>góc CMN=góc CHN=góc CBH

=>góc AMN+góc ABN=180 độ

=>AMNB nội tiếp

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

Xét ΔCAB có 

AN,BM là các đường cao

AN cắt BM tại H

Do đó: H là trực tâm

=>CH vuông góc với AB

b: góc IMO=góc IMH+góc OMH

=90 độ-góc ACH+góc ABM

=90 độ

=>MI là tiếp tuyến của (O)