Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DC là tiếp tuyến
DA là tiếp tuyến
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến
EB là tiếp tuyến
Do đó: EC=EB
Ta có: DC+CE=DE
nên DE=DA+EB
b: Xét tứ giác ADCO có \(\widehat{DAO}+\widehat{DCO}=180^0\)
nên ADCO là tứ giác nội tiếp
=>\(\widehat{ADO}=\widehat{ACO}\)
mà \(\widehat{ACO}=\widehat{CAB}\)
nên \(\widehat{ADO}=\widehat{CAB}\)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
Với câu c
Kẻ BC cắt DA tại một điểm là P
Ta có : DO//CD(...)
AO=OB(...)
==> DP=DA
Ta lại có: DA//EB. ==> IA/IE=AD/BE
Mà AD=CD; BE=CE(Tính chất 2 tt cắt nhau)
==>IA/IE=CD/CE ==> CI//AD. ==> CK//DA
. CI//PD. ==> CI/PD=BI/BD
. IK//DA ==> IK/DA=BI/BD
==> CI/PD=IK/DA
Mà PD=DA(..) ==>CI=IK
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
Xét (O) có
DC,DA là tiếp tuyến
Do đó: DC=DA
Xét (O)có
EC,EB là tiếp tuyến
Do đó: EC=EB
DC+CE=DE
mà DC=DA và EC=EB
nên DA+EB=DE
b: Xét tứ giác DAOC có \(\widehat{DAO}+\widehat{DCO}=90^0+90^0=180^0\)
=>DAOC là tứ giác nội tiếp
=>D,A,O,C cùng thuộc một đường tròn
Xét ΔOAC có OA=OC=R
nên ΔOAC cân tại O
ADCO là tứ giác nội tiếp
=>\(\widehat{ADO}=\widehat{ACO}\)
mà \(\widehat{ACO}=\widehat{OAC}\)(ΔOAC cân tại O)
nên \(\widehat{ADO}=\widehat{OAC}=\widehat{CAB}\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DA,DC là các tiếp tuyến
nên DA=DC
Xét (O) có
EC,EB là các tiếp tuyến
nên EB=EC
DE=DC+CE
=>DE=DA+EB
b: Xét tứ giác DAOC có
góc DAO+góc DCO=180 độ
nên DAOC làtứgiác nội tiếp
=>góc ADO=góc ACO=góc CAB
c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.
Vì MK vuông góc AB => MK // AC // BD
EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)
Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.
\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)
=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)