Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA và OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB và OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)
Ta có: MC+MD=CD
nên CD=CA+DB
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(CM\cdot DM=OM^2=R^2\)
hay \(AC\cdot BD=R^2\)
a: Xét (O) có
CM,CA là tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là trung trực của AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: Xét tứ giác MEOF có
góc MEO=góc MFO=góc EOF=90 độ
nên MEOF là hình chữ nhật
=>EF=MO=R
a: Xét (O) có
PE,PM là tiếp tuyến
=>PE=PM và IP là phân giác của góc EIM(1)
Xét (O) có
QE,QN là tiếp tuyến
=>QE=QN và IQ là phân giác của góc EIN(2)
PQ=PE+EQ
=>PQ=PM+QN
b: Từ (1), (2) suy ra góc PIQ=1/2*180=90 độ
c: Gọi O là trung điểm của PQ
Xét hình thang MNQP có
O,I lần lượt là trung điểm của PQ,MN
=>OI là đường trung bình
=>OI vuông góc MN
=>MN là tiếp tuyến của (O)
Tự vẽ hình nhé !
Dễ dàng chỉ ra được \(\widehat{COD}=90^o\).
Khi đó \(\Delta COD\) vuông tại \(O\) có \(OM\perp CD\) nên theo hệ thức lượng trong tam giác vuông có :
\(CM.MD=MO^2=R^2\)
Theo BĐT Cô - si thì : \(CD=CM+MD\ge2.\sqrt{CM.MD}=2\sqrt{R^2}=2R\)
Dấu "=" xảy ra khi M là điểm chính giữa của cung AB.
a) Xét (O) có
BI là tiếp tuyến có I là tiếp điểm(gt)
BN là tiếp tuyến có N là tiếp điểm(gt)
Do đó: OB là tia phân giác của \(\widehat{NOI}\)(Tính chất hai tiếp tuyến cắt nhau)
Suy ra: \(\widehat{BOI}=\dfrac{1}{2}\cdot\widehat{NOI}\)
Xét (O) có
AI là tiếp tuyến có I là tiếp điểm(gt)
AM là tiếp tuyến có M là tiếp điểm(gt)
Do đó: OA là tia phân giác của \(\widehat{IOM}\)(Tính chất hai tiếp tuyến cắt nhau)
Suy ra: \(\widehat{AOI}=\dfrac{1}{2}\cdot\widehat{IOM}\)
Ta có: \(\widehat{IOB}+\widehat{IOA}=\widehat{BOA}\)(tia OI nằm giữa hai tia OA và OB)
\(\Leftrightarrow\widehat{AOB}=\dfrac{1}{2}\cdot\left(\widehat{ION}+\widehat{IOM}\right)=\dfrac{1}{2}\cdot180^0\)
hay \(\widehat{AOB}=90^0\)
Vậy: \(\widehat{AOB}=90^0\)