Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình
1. Gọi \(K\) là điểm chính giữa của nửa đường tròn. Xét hai tam giác \(\Delta KOD\) và \(\Delta OCH\) có \(OK=CO=R\), \(\angle KOD=\angle OCH\) (so le trong) và \(OD=CH\) (giả thiết). Suy ra hai tam giác \(\Delta KOD\) và \(\Delta OCH\)
bằng nhau (c.g.c). Do đó \(\angle KDO=90^{\circ}\to D\) nằm trên đường tròn đường kính OK.
Khi C trùng A thì D trùng với O và khi C trùng với B thì D trùng với O. Do đó tập hợp D sẽ là toàn bộ đường tròn đường kính OK.
2. Kéo dài tia DC cắt (O) ở điểm thứ hai T. Do tứ giác ACTB nội tiếp nên góc TBA = góc DCA = 60 độ. Vậy T là điểm cố định. Do tam giác ACD đều và M là trung điểm CD nên AM vuông góc với CD. Suy ra M nhìn đoạn AT dưới 1 góc vuông. Vậy M nằm trên đường tròn đường kính AT.
Vì C chỉ chạy trên nửa đường tròn, khi C trùng A thì M trùng A và khi C trùng với B thì M trùng với T. Vậy M chạy trên nửa đường tròn đường kính AT, trong nửa mặt phẳng không chứa điểm B.
Chỉ vậy thôi.
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
a. Ta có: \(\widehat{ADB}=90^o\)(góc nội tiếp chắn nửa đường tròn) => \(\widehat{ADE}=90^o\)
Lại có: \(CH\perp AB\)tại H (gt) mà E \(\in CH\)(do E là giao điểm của BD và CH (gt)) => \(\widehat{EHA}=90^o\)
Xét tứ giác ADEH có: \(\widehat{ADE}+\widehat{EHA}=90^o+90^o=180^o\)=> tứ giác ADEH nội tiếp (DHNB) => đpcm
b.
Ta có: \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nữa đường tròn) => \(\Delta ABC\)vuông tại C
=> \(S\Delta ABC=\frac{1}{2}AC\times BC=\frac{1}{2}CH\times AB\)=> CH = \(\frac{AC\times BC}{AB}\)
=> \(AC\times AH+CB\times CH=AC\times AH+CB\times\frac{AC\times BC}{AB}\)= \(AC\times(AH+\frac{BC^2}{AB})=AC\times\frac{(AH\times AB+BC^2)}{AB}\)(1)
Áp dụng hệ thức lượng trong \(\Delta ABC\)vuông tại C với đường cao CH ta được: AH \(\times AB=AC^2\)(2)
Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại C ta được: \(AC^2+BC^2=AB^2\)(3)
Thế (2) và (3) vào (1) ta được : \(AC\times AH+CB\times CH=AB\times AC\)(ĐPCM)
c. Gọi K là điểm chính giữa cung AB (K nằm cùng phía với C so với bờ AB) => K là điểm cố định và \(KO\perp AB\)tại O => KO // CH => \(\widehat{KOC}=\widehat{KOM}=\widehat{HCO}\)(So le trong)
Nối K với M
Xét \(\Delta KOM\)và \(\Delta OCH\)có:
+ KO = OC = R
+ \(\widehat{KOM}=\widehat{HCO}\)(cmt)
+ OM = CH (gt)
=> \(\Delta KOM=\Delta OCH\)(c.g.c) => \(\widehat{KMO}=\widehat{OHC}=90^o\Rightarrow\Delta KOM\)vuông tại M => M \(\in(I,\frac{OK}{2})\)cố định (trong đó I là trung điểm của OK)
1. BD^2- DK^2 = BA^2 - AK^2 = 4R^2 - R^2 / 4
2.Gọi N là trung điểm AM
=> ON là đường trung bình trong tam giác ABM
=> ON // BM và ON = 1/2*BM
BM cắt OC tại L ,ta có M là trung điểm NC và ML // ON
=> ML là đường trung bình của tam giác CON
=> L là trung điểm OC
b.
Gọi I là điểm chính giữa cung AB \(\Rightarrow I\) cố định
Đồng thời ta có \(IA=IB\Rightarrow\Delta IAB\) vuông cân tại I
\(\Rightarrow\widehat{BAI}=45^0\)
Qua B kẻ đường thẳng vuông góc AB cắt AI kéo dài tại F \(\Rightarrow F\) cố định
Tam giác ABF vuông cân tại B (tam giác vuông có 1 góc \(\widehat{BAI}=45^0\))
\(\Rightarrow\widehat{AFB}=45^0\)
Đồng thời suy ra 3 điểm A,B,F thuộc đường tròn tâm I bán kính AI cố định.
\(BCDE\) là hình vuông \(\Rightarrow\widehat{CDB}=45^0\Rightarrow\widehat{AFB}=\widehat{ADB}=45^0\)
Lại có F, D nằm cùng 1 phía nửa mặt phẳng bờ AB
\(\Rightarrow AFDB\) nội tiếp (2 góc bằng nhau cùng chắn AB)
\(\Rightarrow D\) thuộc đường tròn (I;IA) cố định khi C di động
c.
Do F thuộc (I;IA) \(\Rightarrow IB=ID\Rightarrow I\) thuộc trung trực của BD
Mà ABCD là hình vuông \(\Rightarrow AC\) là trung trực của BD
\(\Rightarrow I\in AC\)
Vậy CE luôn đi qua điểm I cố định
d.
\(\widehat{CEB}=45^0\) (BCDE là hình vuông), mà I, C, E thẳng hàng theo cmt
\(\Rightarrow\widehat{IEB}=\widehat{IFB}=45^0\)
Lại có E, F nằm cùng phía nửa mặt phẳng bờ IB
\(\Rightarrow EBIF\) nội tiếp
\(\Rightarrow E\) thuộc đường tròn ngoại tiếp tam giác IBF cố định
e.
Gọi G là tâm hình vuông \(\Rightarrow BD\) và CE vuông góc nhau tại G
\(\Rightarrow\widehat{CGB}=90^0\)
Do I, C, E thẳng hàng \(\Rightarrow\widehat{IGB}=90^0\)
\(\Rightarrow G\) thuộc đường tròn đường kính IB cố định