K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: C=3*2*3,14=18,84cm

b: S=3^2*3,14=28,26cm2

c: \(l_{AB}=\dfrac{pi\cdot3\cdot60}{180}=pi\left(cm\right)\)

d: \(S=\dfrac{l\cdot R}{2}=\dfrac{pi\cdot3}{2}=1.5pi\left(cm^2\right)\)

27 tháng 11 2018

a, AC = 4cm => BC =  4 3 cm

=> R = 4cm => C = 8πcm, S = 16π  c m 2

b, ∆AOC đều =>  A O C ^ = 60 0

=>  C O D ^ = 120 0 => l C A D ⏜ = π . 4 . 120 180 = 8 π 3 cm

=> S =  8 π 3 . 4 2 = 16 π 3 c m 2

20 tháng 3 2016

* Số đo cung nhỏ AB=góc AOB( góc ở tâm)\(\Rightarrow\) Số đo cung nhỏ AB=60 độ

* Diện ích hình quạt tròn OAB là

     \(S=\frac{\pi\times R2\times n}{360}=\frac{\pi\times9\times60}{360}=\frac{3}{2}\pi\approx\frac{3}{2}\times3,14\approx4,71\)cm2

* Số đo cung lớn AB= 360 độ - 60 độ =300 độ

  Độ dài cung lớn AB là:

       l=3,14*3*300/180=15,7 cm

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Lời giải:

Từ $O$ hạ $OH\perp AB$ thì $H$ là trung điểm của $AB$

Tam giác $OAB$ cân tại $O$ nên đường cao, đường trung tuyến $OH$ đồng thời là đường phân giác.

$\Rightarrow \widehat{AOH}=60^0$

$\sin \widehat{AOH}=\frac{AH}{AO}=\frac{\sqrt{3}}{2}$

$\Rightarrow AH=AO.\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}R$

$\Rightarrow AB=\sqrt{3}R$ (độ dài dây $AB$)

Diện tích tam giác $AOB$ là:

$\frac{1}{2}.OA.OB.\sin \widehat{AOB}=\frac{1}{2}R^2.\sin 120^0=\frac{\sqrt{3}}{4}R^2$

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Hình vẽ:

undefined

OM^2+ON^2=MN^2

OM=ON

=>ΔOMN vuông cân tại O

\(S_{q\left(OMN\right)}=\dfrac{pi\cdot3^2\cdot90}{360}=2.25pi\)

b: \(S_{OMN}=\dfrac{1}{2}\cdot OM\cdot ON=4.5\left(cm^2\right)\)

\(S_{VP\left(MN\right)}=2.25pi-4.5\)(cm2)

a: sđ cung AnB=360-80=280 độ

b: Độ dài cung là; \(\dfrac{2\cdot pi\cdot3\cdot80}{360}=\dfrac{4}{3}\cdot pi\)

c: C=3*2*3,14=18,84(cm)

S=3^2*3,14=28,26cm2