K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
28 tháng 1 2019
a, HS tự làm
b, HS tự làm
c, IK = 1 2 CK = 1 2 AC.sinα = R.cosα.sinα
d, Giả sử BI cắt AM tại N. Vì IK//AM => MO = OP
=> 1 O I 2 = 1 O M 2 + 1 O N 2
= 1 O P 2 + 1 O N 2 = 1 O B 2 => M ≡ N
a: Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB và OH là phân giác của \(\widehat{AOB}\)
ta có: OH là phân giác của góc AOB
=>OM là phân giác của góc AOB
=>\(\widehat{AOM}=\widehat{BOM}\)
Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
=>\(\widehat{OBM}=\widehat{OAM}\)
mà \(\widehat{OAM}=90^0\)
nên \(\widehat{OBM}=90^0\)
=>MB là tiếp tuyến của (O)
b: Sửa đề: B,O,C thẳng hàng
Ta có: AB\(\perp\)OM
OM//AC
Do đó: AB\(\perp\)AC
=>ΔABC vuông tại A
Vì ΔABC vuông tại A
nên ΔABC nội tiếp đường tròn đường kính BC
mà ΔABC nội tiếp (O)
nên O là trung điểm của BC
=>B,O,C thẳng hàng
c: Xét (O) có
ΔDBC nội tiếp
BC là đường kính
Do đó: ΔDBC vuông tại D
=>BD\(\perp\)DC tại D
=>BD\(\perp\)CM tại D
Xét ΔBCM vuông tại B có BD là đường cao
nên \(MD\cdot MC=MB^2\)(1)
Xét ΔBOM vuông tại B có BH là đường cao
nên \(MH\cdot MO=MB^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MC=MH\cdot MO\)
=>\(\dfrac{MD}{MO}=\dfrac{MH}{MC}\)
Xét ΔMDH và ΔMOC có
\(\dfrac{MD}{MO}=\dfrac{MH}{MC}\)
\(\widehat{DMH}\) chung
Do đó: ΔMDH đồng dạng với ΔMOC
=>\(\widehat{MHD}=\widehat{MCO}\)
=>\(\widehat{MHD}=\widehat{OCD}\)
mà \(\widehat{OCD}=\widehat{ODC}\)(ΔOCD cân tại O)
nên \(\widehat{MHD}=\widehat{ODC}\left(3\right)\)
Ta có: \(\widehat{MHD}=\widehat{MCO}\)
mà \(\widehat{MHD}+\widehat{OHD}=180^0\)(hai góc kề bù)
nên \(\widehat{MCO}+\widehat{OHD}=180^0\)
=>\(\widehat{OCD}+\widehat{OHD}=180^0\)
=>OHDC là tứ giác nội tiếp
=>\(\widehat{OHC}=\widehat{ODC}\left(4\right)\)
Từ (3) và (4) suy ra \(\widehat{OHC}=\widehat{MHD}\)