K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2023

a: ΔOBC cân tại O

mà OH là đường cao

nên H là trung điểm của BC

=>HB=HC=24/2=12cm

ΔOHB vuông tại H

=>\(OH^2+HB^2=OB^2\)

=>\(OH^2+12^2=15^2\)

=>\(OH^2=15^2-12^2=81\)

=>OH=9(cm)

b: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

ΔOBC cân tại O

mà OH là đường trung tuyến

nên OH là đường trung trực của BC(2)

Từ (1),(2) suy ra O,H,A thẳng hàng

c:Xét  ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(OA=\dfrac{OB^2}{OH}=\dfrac{15^2}{9}=25\left(cm\right)\)

ΔOBA vuông tại B

=>\(OB^2+BA^2=OA^2\)

=>\(BA^2+15^2=25^2\)

=>\(BA^2=625-225=400\)

=>BA=20(cm)

AB=AC

mà AB=20cm

nên AC=20cm

d: Xét ΔOBM vuông tại B và ΔOCN vuông tại C có

OB=OC

\(\widehat{BOM}=\widehat{CON}\)

Do đó: ΔOBM=ΔOCN

=>BM=CN

Xét ΔAMN có \(\dfrac{AB}{BM}=\dfrac{AC}{CN}\)

nên BC//MN

AB+BM=AM

AC+CN=AN

mà AB=AC và BM=CN

nên AM=AN

=>\(\widehat{BMN}=\widehat{CNM}\)

Xét tứ giác BCNM có BC//MN

nên BCNM là hình thang

Hình thang BCNM có \(\widehat{BMN}=\widehat{CNM}\)

nen BCNM là hình thang cân

8 tháng 12 2017

neu du kha nag minh se lam

8 tháng 12 2017

a, AC=AB= 12 cm.

b,BH= 60/13 cm

8 tháng 12 2015

Tự vẽ hình

a)  theo t/c  2 tiếp tuyến cắt nhau

=> AB =AC 

mà OB =OC =R

=> OA là  trung trực của BC => OA vuông góc BC tại H => H là trung điểm của BC => BH =BC/2 =15

Áp dụng Pi - ta -go cho HBO vuông tại H => OH2 = OB2 - BH2 = 172 - 152 =64 => OH =8

b)  theo câu a => O;H;A thẳng hàng rồi

c) 

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

a: Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)

b: Xét (O) có 

OH là một phần đường kính

CD là dây

OH\(\perp\)CD tại H

Do đó: H là trung điểm của CD

Xét tứ giác ECAD có 

H là trung điểm của đường chéo CD

H là trung điểm của đường chéo EA

Do đó: ECAD là hình bình hành

mà EA\(\perp\)CD

nên ECAD là hình thoi

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
17 tháng 8 2016

a) Dùng Pytago ta tính được OH=9cm
b) Vì và  nên OA là đường trung trực BC
Mà H là trung điểm BC
=>A,H,O thẳng hàng.

c.\(\Delta ABO\) Vuông tại B đươngg cao BH

\(\Rightarrow\frac{1}{AB^2}=\frac{1}{BH^2}-\frac{1}{OB^2}\)

\(\Rightarrow\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AB=20cm\)

 

17 tháng 8 2016

Thanks p