K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a) Ta có △AOC vuông tại C
⇒sin^CAO=OC/OA
⇒CAOˆ=30°
Mà A là giao điểm của 2 tiếp tuyến của (O)
⇒BACˆ=2.OACˆ=2.30° =60° (1)
Và AB=AC(2)
Từ (1),(2)⇒△ABC đều
b) Ta có OD⊥OB
AB⊥OB
Suy ra OD//AB⇒OD//AE(3)
Chứng minh tương tự: OE//AD(4)
Tự (3),(4)⇒ADOE là hình bình hành
Ta có △AOC vuông tại C
⇒OABˆ+AOBˆ=90°
⇒AOBˆ=90° −OABˆ=90° −30° = 60°
Ta lại có:DOBˆ=90°
⇒DOAˆ+AOBˆ=90°
⇔DOAˆ+ 60°=90°
⇒ DOAˆ=30°
⇒OADˆ=DOAˆ =30°
⇒△DOA cân tại D⇒AD=DO
Mà ADOE là hình bình hành
Vậy ADOE là hình thoi
c) Ta gọi H là giao điểm hai đường chéo OA và DE của hình thoi ADOE
⇒OH=HA=OA/2=2R/2=R
⇒H nằm trên đường tròn (O)
Và AO⊥DE ⇒ OHDˆ= 90°
Vậy DE là tiếp tuyến của đường tròn (O) tại H