Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm tắt nha bạn không hiểu đâu thì hỏi lại nhé
a) MA, MB là tiếp tuyến
=> \(\widehat{OBM}=\widehat{OAM}=90^o\) (t/c tiếp tuyến)
=> \(\widehat{OBM}+\widehat{OAM}=180^o\)
mà 2 góc đối nhau
=> tứ giác AOBM nội tiếp
=> 4 điểm A, O, B, M cùng thuộc 1 đường tròn
b) Áp dụng hệ thức lượng vào tam giác OAM vuông tại A đường cao AH
=> \(AM^2=MH.MO\)
Áp dụng hệ thức lượng vào tam giác DAM vuông tại A đường cao AC
=> \(AM^2=MC.MD\)
=> \(AM^2=MH.MO=MC.MD\)
a, Xét tam giác MAD và tam giác MCA có
^M _ chung
^MDA = ^MAC ( cùng chắn cung CA )
Vậy tam giác MAD ~ tam giác MCA (g.g)
\(\dfrac{MA}{MC}=\dfrac{MD}{MA}\Rightarrow MA^2=MD.MC\)(1)
b, Vì MA là tiếp tuyến đường tròn (O) với A tiếp điểm
Lại có OA = OB = R ; MA = MB ( tc tiếp tuyến cắt nhau )
=> OM là trung trực đoạn BA
Xét tam giác MAO đường cao AH ta có
\(MA^2=MO.MH\)(2)
Từ (1) ; (2) suy ra \(MO.MH=MD.MC\)
a/
Ta có
\(\widehat{OAM}=\widehat{OBM}=90^o\)
=> A và B cùng nhìn OM dưới 1 góc \(90^o\) => A và B thuộc đường tròn đường kính OM => B; O; A; M cùng thuộc 1 đường tròn
b/
Ta có
\(\widehat{BAC}=90^o\) (góc nt chắn nửa đường tròn)
\(\Rightarrow AC\perp AB\)
Ta có
\(OM\perp AB\) (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)
=> AC//OM
Xét tg vuông AMO có
\(MO\perp AB\left(cmt\right)\)
\(\Rightarrow MA^2=MH.MO\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích của hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông BMO có
\(MO\perp AB\left(cmt\right)\)
\(\Rightarrow OB^2=OH.MO\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích của hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Mà OB=OC (bán kính (O))
\(\Rightarrow OC^2=OH.MO\)
c/
Ta có
MA=MB (Hai tt cùng xp từ 1 điểm ngoài hình tròn thì khoảng cách từ điểm đó đến 2 tiếp điểm = nhau) (1)
AH=BH (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối 2 tiếp điểm)
\(\Rightarrow AH=BH=\dfrac{AB}{2}\) (2)
Xét tg vuông AHO và tg vuông AMO có
\(\widehat{OAH}=\widehat{AMO}\) (cùng phụ với \(\widehat{AOM}\))
=> tg AHO đồng dạng với tg AMO (g.g.g)
\(\Rightarrow\dfrac{AH}{MA}=\dfrac{OA}{MO}\) (3)
Thay (1) và (2) vờ (3)
\(\Rightarrow\dfrac{\dfrac{AB}{2}}{MB}=\dfrac{OA}{MO}\Rightarrow\dfrac{AB}{2MB}=\dfrac{OA}{MO}\Rightarrow\dfrac{AB.MO}{2}-MB.OA\)
Gọi I' là giao của MO với (O), Nối AI'
Ta có
sđ cung AI' = sđ cung BI' (2 tt cùng xp từ 1 điểm ngoài hình tròn thì đường nối điểm đó với tâm đường tròn chia đôi dây cung bị chặn bởi 2 tiếp điểm)
\(sđ\widehat{MAI'}=\dfrac{1}{2}sđcungAI'\) (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{BAI'}=\dfrac{1}{2}sđcungBI'\) (góc nội tiếp đường tròn)
\(\Rightarrow\widehat{MAI'}=\widehat{BAI'}\) => AI' là phân giác của \(\widehat{BAM}\) Mà AI cũng là phân giác của \(\widehat{BAM}\)
Ta có I và I' cùng thuộc MO => \(I\equiv I'\Rightarrow I\in\left(O\right)\) cố định khi M thay đổi