K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1

Bài 1:

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

vậy p + 1 và p -  1 là hai số chẵn.

Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.

đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)

A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1) 

Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.

⇒ 4.k.(k + 1) ⋮ 8 

⇒ A = (p + 1).(p - 1) ⋮ 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng:

   p = 3k + 1; hoặc p = 3k + 2

Xét trường hợp p = 3k + 1 ta có:

  p - 1 = 3k + 1  - 1  = 3k ⋮ 3

⇒ A = (p + 1).(p - 1) ⋮ 3  (2)

Từ (1) và (2) ta có:

A ⋮ 3; 8  ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24

⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)

Xét trường hợp p = 3k + 2 ta có

p + 1 = 3k + 2 + 1  = 3k + 3 = 3.(k + 1) ⋮ 3 (3)

Từ (1) và (3) ta có: 

A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24 

⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)

Kết hợp (*) và(**) ta có

\(⋮\) 24 (đpcm)

 

 

  

 

 

10 tháng 1

Cảm ơn cô

7 tháng 3 2015

p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)

10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)

Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3

Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)

p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)

Ta có: (2;3)=1 (***)

Từ (*),(**),(***) => 5p+1 chia hết cho 6

 

22 tháng 3 2016

p nguyên tố > 3 

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 

Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

13 tháng 3 2015

vì P là số nguyên tố lớn hơn 3

=> P = 3k + 1 hoặc 3k + 2

Nếu P = 3k + 1 => 10P = 10k + 11 là số nguyên tố ( đúng )

Nếu P = 3k + 2 => 10P = 30k  31 chia hết cho 3 ( loại )

=> P = 3k + 1

=> 5P + 1 = 15P + 6 chia hết cho 6 

22 tháng 3 2016

p nguyên tố > 3 

=> 10p không chia hết cho 3, gt có 10p+1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
mà 2 và 3 đều là những số nguyên tố nên từ (*) => 5p+1 chia hết cho 3 
Mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p+1 chia hết cho 2*3 = 6 

7 tháng 12 2015

dễ mà, tik đi, mik giải cho

25 tháng 9 2021

A

14 tháng 10 2018

là hợp số bạn nha

ví dụ 1:P=5

ta có 5.5+1=26

26 là hợp số

ví dụ 2:P=7

7.5+1=36

36 là hợp số

AH
Akai Haruma
Giáo viên
15 tháng 8 2017

Lời giải:

\(\bullet\)Nếu $p=2$ thì \(10p+1\not\in \mathbb{P}\) (loại)

\(\bullet\) Nếu \(p=3\Rightarrow 10p+1\in\mathbb{P}\). Cùng lúc đó \(5p+1=16\) là hợp số.

\(\bullet\) Nếu \(p>3\Rightarrow p\not\vdots 3\). Xét 2 TH:

TH1: \(p=3k+1\)

Khi đó \(5p+1=5(3k+1)+1=15k+6\vdots 3\) . Mà \(15k+6>3\) nên là hợp số.

TH2: \(p=3k+2\Rightarrow 10p+1=30k+21\vdots 3\), lớn hơn $3$ nên không thể là số nguyên tố (trái với đkđb)

Từ các trường hợp trên, ta có đpcm.

22 tháng 10 2016

p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p + 1 không chia hết cho 3 
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3 
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*) 
Mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3 
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2 
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau 
=> 5p + 1 chia hết cho 2.3 = 6 
=> 5p + 1 là hợp số

 

22 tháng 10 2016

nhưng đây là có p >3