K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2x-\sqrt{x}+2\sqrt{x}+2\)

\(=2-x\)

b) Để P=3 thì 2-x=3

hay x=-1(Không thỏa mãn ĐKXĐ)

Vậy: Không có giá trị nào của x để P=3

c) Thay \(x=7+2\sqrt{3}\) vào P, ta được:

\(P=2-7-2\sqrt{3}=-5-2\sqrt{3}\)

Vậy: Khi \(x=7+2\sqrt{3}\) thì \(P=-5-2\sqrt{3}\)

a) Ta có: \(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

\(=\left(\dfrac{x+1}{x+1}+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{x-2\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1}{1}\cdot\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) Để \(P=5\) thì \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}=5\)

\(\Leftrightarrow x+\sqrt{x}+1=5\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}+1=5\sqrt{x}-5\)

\(\Leftrightarrow x+\sqrt{x}+1-5\sqrt{x}+5=0\)

\(\Leftrightarrow x-4\sqrt{x}+6=0\)

\(\Leftrightarrow x-2\cdot\sqrt{x}\cdot2+4+2=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+2=0\)(Vô lý)

Vậy: Không có giá trị nào của x để P=5

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{\sqrt{x}}{2}\right)^2\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\cdot\left(\dfrac{1}{2\sqrt{x}}-\dfrac{x}{2\sqrt{x}}\right)^2\)

\(=\dfrac{x-2\sqrt{x}+1-\left(x+2\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{4x}\)

\(=\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{4x}\)

\(=\dfrac{-4\sqrt{x}\cdot\left(x-1\right)}{4x}\)

\(=\dfrac{-x+1}{\sqrt{x}}\)

b) Để P=2 thì \(-x+1=2\sqrt{x}\)

\(\Leftrightarrow-x+1-2\sqrt{x}=0\)

\(\Leftrightarrow x+2\sqrt{x}-1=0\)

\(\Leftrightarrow x+2\sqrt{x}+1-2=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=\sqrt{2}\\\sqrt{x}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{2}-1\\\sqrt{x}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\Leftrightarrow x=3-2\sqrt{2}\)

Vậy: Để P=2 thì \(x=3-2\sqrt{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$

\(P=\frac{1}{\sqrt{x}+1}:\left[\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}\right]\)

\(=\frac{1}{\sqrt{x}+1}:\frac{x-9-(x-4)+\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}-3)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)

Để $P>0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+1}>0$

$\Leftrightarrow \sqrt{x}-2>0$ (do $\sqrt{x}+1>0$)

$\Leftrightarrow x>4$

Kết hợp với ĐKXĐ suy ra $x>4; x\neq 9$

12 tháng 5 2021

a, \(P=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\left[\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\)

\(P=\dfrac{1}{\sqrt{x}+1}:\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(P=\dfrac{1}{\sqrt{x}+1}.\sqrt{x}-2=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

16 tháng 10 2023

1: 

ĐKXĐ: x>=0; x<>4

\(P=\dfrac{\sqrt{x}+\sqrt{x}-2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}\)

\(=\dfrac{2\sqrt{x}-2}{2}\cdot\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

3: \(P-1=\dfrac{\sqrt{x}-1-\sqrt{x}-2}{\sqrt{x}+2}=\dfrac{-3}{\sqrt{x}+2}< 0\)

=>P<1

16 tháng 10 2023

giúp mình đặc biệt là câu 3 ạ

12 tháng 7 2021

\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)

\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)

\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\) 

\(\Rightarrow1< x< 36\)

 

12 tháng 7 2021

\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)

\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)

\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)

\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)

a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)