K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1Cho hàm số y=ax^2 có đồ thị Pa) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm đượcb) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tungc)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)d( chứng tỏ OCDA là hình vuông BÀI 2:Cho hàm...
Đọc tiếp

BÀI 1
Cho hàm số y=ax^2 có đồ thị P
a) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm được
b) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tung
c)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)
d( chứng tỏ OCDA là hình vuông

 

BÀI 2:
Cho hàm số y=ax^2
a) tìm a biét đồ của thị hàm số đã cho đi qua điểm A(-căn 3; 3). vẽ đồ thị P của hàm số với a vừa tìm được
b)trên P lấy 2 điểm B, C có hoành độ lần lượt là 1, 2 .Hảy viết phương trình đường thẳng BC
c) cho D( căn 3;3). Chứng tỏ điểm D thuộc P và tam giác OAD là tam giác đều.Tính diện tích của tam giác OAD

 

BÀI 5:Cho hàm số y=2x+b hãy xác định hệ số b trong các trường hợp sau :
a) đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ bằng -3
b) đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1.5

0
NV
20 tháng 4 2023

a. Em tự giải

b. Từ giả thiết ta có \(A\left(-2;1\right)\) và \(B\left(4;4\right)\)

Gọi phương trình (d) có dạng \(y=ax+b\), do (d) qua A và B nên:

\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x+2\)

c. Câu này có vài cách giải cho lớp 9, cách nhanh nhất là sử dụng tính chất tiếp tuyến.

Từ M kẻ \(MH\perp AB\Rightarrow S_{ABM}=\dfrac{1}{2}MH.AB\)

Do AB cố định \(\Rightarrow S_{max}\) khi \(MH_{max}\)

Gọi \(d_1\) là đường thẳng song song d và tiếp xúc (P), gọi C là tiếp điểm \(d_1\) và (P)

Do \(d_1\) song song (d) nên pt có dạng: \(y=\dfrac{1}{2}x+b\)

Phương trình hoành độ giao điểm \(d_1\) và (P):

\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+b\Rightarrow x^2-2x-4b=0\) (1)

Do \(d_1\) tiếp xúc (P) \(\Rightarrow\left(1\right)\) có nghiệm kép

\(\Rightarrow\Delta'=1+4b=0\Rightarrow b=-\dfrac{1}{4}\)

Thế vào (1) \(\Rightarrow x_C^2-2x_C+1=0\Rightarrow x_C=1\Rightarrow y_C=\dfrac{1}{4}\) \(\Rightarrow C\left(1;\dfrac{1}{4}\right)\)

Từ C kẻ \(CK\perp d\)

Giả sử HM kéo dài cắt \(d_1\) tại D \(\Rightarrow\) tứ giác CKHD là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông)

\(\Rightarrow CK=DH\)

Mà \(DH=MH+MD\ge MH\Rightarrow CK\ge MH\)

\(\Rightarrow MH_{max}=CK\) khi M trùng C

Hay \(M\left(1;\dfrac{1}{4}\right)\)

NV
20 tháng 4 2023

loading...

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

a) Thay x=-1 vào (P), ta được:

\(y=\left(-1\right)^2=1\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

Vậy: M(-1;1) và N(2;4)

Gọi (d):y=ax+b là ptđt đi qua hai điểm M và N

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-3\\-a+b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b-1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy: (d): y=x+2

b: Tọa độ A là:

x+2=-x+4 và y=x+2

=>x=1 và y=3

Tọa độ B là:

y=0 và x+2=0

=>x=-2 và y=0

Tọa độ C là

y=0 và -x+4=0

=>x=4 và y=0

c: A(1;3); B(-2;0); C(4;0)

\(AB=\sqrt{\left(-2-1\right)^2+\left(0-3\right)^2}=3\sqrt{2}\)

\(AC=\sqrt{\left(4-1\right)^2+\left(0-3\right)^2}=3\sqrt{2}\)

\(BC=\sqrt{\left(4+2\right)^2+\left(0-0\right)^2}=6\)

Vì AB^2+AC^2=BC^2 và AB=AC
nên ΔABC vuông cân tại A