K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm là:

\(x^2-\left(2m+1\right)x+m^2-1=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-1\right)\)

\(=4m^2+4m+1-4m^2+4=4m+5\)

Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-1< 0\)

hay -1<m<1

8 tháng 5 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (*)

Pt (*) có \(\Delta'=\left(-1\right)^2-1.m=1-m\)

Để (d) cắt (P) tại 2 điểm phân biệt \(x_1,x_2\) thì pt (*) phải có 2 nghiệm phân biệt \(x_1,x_2\) \(\Leftrightarrow\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)

Khi \(m< 1\), áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)\(\Rightarrow y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2^2-2m=4-2m\)

Do đó để \(y_1+y_2+x_1^2x_2^2=6\left(x_1+x_2\right)\)\(\Leftrightarrow4-2m+m^2=6.2\)\(\Leftrightarrow m^2-2m-8=0\) (1)

pt (1) có \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)

Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}m_1=\dfrac{-\left(-1\right)+\sqrt{9}}{1}=4\\m_2=\dfrac{-\left(-1\right)-\sqrt{9}}{1}=-2\end{matrix}\right.\)

Như vậy để (d) cắt (P) tại 2 điểm có hoành độ và tung độ thỏa mãn yêu cầu đề bài thì \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

8 tháng 5 2022

Mà do \(m< 1\) nên ta chỉ nhận trường hợp \(m=-2\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ và tung độ thỏa mãn đề bài thì \(m=-2\)

7 tháng 4 2022

pt hoành độ giao điểm của (P) và (d) là \(mx^2=-3x+1\)\(\Leftrightarrow mx^2+3x-1=0\)(*)

pt (*) có \(\Delta=3^2-4.m.\left(-1\right)=4m+9\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=4m+9>0\Leftrightarrow m>-\frac{9}{4}\Leftrightarrow\hept{\begin{cases}m>-\frac{9}{4}\\m\ne0\end{cases}}\)

Khi đó áp dụng định lí Vi-ét, ta có \(x_1x_2=-\frac{1}{m}\)

A và B nằm cùng phía với trục tung \(\Rightarrow x_1,x_2\)cùng dấu \(\Rightarrow x_1x_2>0\)\(\Rightarrow-\frac{1}{m}>0\)\(\Leftrightarrow\frac{1}{m}< 0\)\(\Leftrightarrow m< 0\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn yêu cầu đề bài thì \(-\frac{9}{4}< m< 0\)

NM
21 tháng 3 2022

Xét phương trình hoành độ giao điểm 

\(x^2=\left(m-1\right)x+m+4\Leftrightarrow x^2-\left(m-1\right)x-m-4=0\text{ }\left(\text{*}\right)\)

để d cắt P tại hai điểm phân biệt nằm ở hai phía của trục tung thì phương trình (*) có hai nghiệm trái dấu

khi đó điều kiện \(\Leftrightarrow-m-4< 0\Leftrightarrow m>-4\)

24 tháng 3 2022

- Xét pt hoành độ gd....:

x2-(m-1)x-m-4=0 (1)

- để (P) cắt (d) tại 2 đm nằm về 2 phía của trục tung thì pt(1) có 2 nghiệm trái dấu nhau

\(\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-4\left(-m-4\right)>0\\P=x_1x_2=-m-4< 0\Leftrightarrow m>-4\end{matrix}\right.\)

Vậy với m>-4 thì ....

20 tháng 11 2017

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A

NV
18 tháng 3 2021

Pt hoành độ giao điểm: 

\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)

(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow-m< 0\Rightarrow m>0\)

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10

19 tháng 4 2020

Đề thi tuyển sinh THPT Hoàng Văn Thụ, Hòa Bình, 2013-2014

Giải:

PT hoành độ giao điểm là (m+1)m=x2

<=> x2-(m+1)x+m=0

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2,m\ne1\)

\(\sqrt{\Delta}=m-1\)

\(x_1=\frac{m+1+m-1}{1}=2m\)

\(\Rightarrow y_1=\left(2m\right)^2-\left(m+1\right)2m+m=4m^2-2m^2-2m+m=2m^2-m\)

\(x_2=\frac{m+1-m+1}{1}=2\)

\(\Rightarrow y_2=4-\left(m+1\right)\cdot2+m=4-2m-2+m=2-m\)

=> A(2m;2m2-m)

PTHĐGĐ là:

x^2-2x+m-3=0

Để (P) cắt (d) hai điểm phân biệt nằm về hai phía của trục tung thì m-3<0

=>m<3

13 tháng 5 2018

a.

pthdgd

x^2-mx-2=0

∆=m^2+2>o moi m

c/a=-2<0

=>x1<0<x2 moi m => dpcm