K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

25 tháng 4 2022

Hoành độ của 2 giao điểm là nghiệm của phương trình

x2=mx+m+1x2=mx+m+1

⇒x2−mx−m−1=0⇒x2-mx-m-1=0

Δ=(−m)2+4(m+1)=m2+4m+4=(m+2)2≥0∀mΔ=(-m)2+4(m+1)=m2+4m+4=(m+2)2≥0∀m

Vậy phương trình luôn có  nghiệm 

Để (P)(P) cắt (d)(d) tại 2 điểm có hoành độ x1x1 và x2x2 thì

Δ>0Δ>0

⇒m≠2⇒m≠2 

Để 2 giao điểm khác phía với trục tung thì

x1.x2<0x1.x2<0

Theo hệ thức vi-ét

⇒⇒{x1.x2=−m−1x1+x2=m{x1.x2=−m−1x1+x2=m

Để −m−1<0-m-1<0

⇒m≻1⇒m≻1

Ta lại có

{x1+x2=m2x2−3x2=5{x1+x2=m2x2−3x2=5

⇒{2x1+2x2=2m2x1−3x2=5⇒{2x1+2x2=2m2x1−3x2=5

⇒{x1+x2=m5x2=2m−5⇒{x1+x2=m5x2=2m−5

⇒{x1+x2=mx2=2m−55⇒{x1+x2=mx2=2m−55

⇒⎧⎪ ⎪⎨⎪ ⎪⎩x1=5m−2m+55=3m+55x2=2m−55⇒{x1=5m−2m+55=3m+55x2=2m−55

Thay x1x1 và x2x2 vào

x1.x2=−m−1x1.x2=-m-1

Ta được

3m+55.2m−55=−m−13m+55.2m-55=-m-1

⇒6m2−5m−25=−25m−25⇒6m2-5m-25=-25m-25

⇒6m2+20m=0⇒6m2+20m=0

⇒2m(3m+10)=0⇒2m(3m+10)=0

⇒⇒⎡⎣m=0(TM)m=−103(KTM)[m=0(TM)m=−103(KTM) 

Vậy với m=0m=0 thì thõa mãn đầu bài 

Sai dấu làm dò mãi mới ra

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

12 tháng 3 2023

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=mx+5\)

\(x^2-mx-5=0\)

\(\Delta=m^2+20\)

Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt

Câu tìm m bạn ghi rõ đề ra nhá

12 tháng 3 2023

đề ns z á chắc đề sai đâu r cảm ơn bn nhiều 

22 tháng 4 2021

Phương trình hoành độ giao điểm là :

\(-x^2=mx+2\)

\(\Leftrightarrow x^2+mx+2=0\)

Lại có : \(\Delta=m^2-8>0\)

Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x1+x2=-m\\x1x2=2\end{matrix}\right.\)

\(\left(x1+1\right)\left(x2+1\right)=0\)

\(\Leftrightarrow x1x2+x1+x1+1=0\)

\(\Leftrightarrow2-m+1=0\Leftrightarrow m=3\)

 

−x2=mx+2

⇔x2+mx+2=0

chúng ta sẽ lại có : Δ=m2−8>0

Theo định lí Vi - et ta có :

{x1+x2=−mx1x2=2

\(\trái(x1+1\phải)\trái(x2+1\phải)=0\)

⇔x1x2+x1+x1+1=0

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

7 tháng 1 2018

Xét phương trình hoành độ giao điểm của (d) và (P):

x 2 = m x + 5 ⇔ x 2 − m x − 5 = 0 .

Ta có tích hệ số  a c = − 5 < 0  nên phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi m hay thẳng (d) cắt parabol (P) tại hai điểm phân biệt với mọi m.

Theo hệ thức Vi-ét ta có x 1 + x 2 = m x 1 x 2 = − 5 Ta có:

x 1 > x 2 ⇔ x 1 2 > x 2 2 ⇔ x 1 2 − x 2 2 > 0 ⇒ x 1 + x 2 x 1 − x 2 > 0

Theo giả thiết:  x 1 < x 2 ⇔ x 1 − x 2 < 0  do đó  x 1 + x 2 < 0 ⇔ m < 0 .

Vậy thỏa mãn yêu cầu bài toán.

b: Phương trình hoành độ giao điểm là:

\(\dfrac{3}{2}x^2-mx-2=0\)

\(\Leftrightarrow3x^2-2mx-4=0\)

a=3; b=-2m; c=-4

Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}-3\cdot\dfrac{-4}{3}=40\)

\(\Leftrightarrow m^2\cdot\dfrac{4}{9}=36\)

=>m=9 hoặc m=-9

a: Thay m=3 vào (d), ta được:

y=3x-3+1=3x-2

Tọa độ giao điểm của (P) và (d) là:

\(\left\{{}\begin{matrix}x^2-3x+2=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-2\right)=0\\y=x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(1;1\right);\left(2;4\right)\right\}\)

b: Phương trình hoành độ giao điểm là:

\(x^2-mx+m-1=0\)

Để (P) cắt (d) tại hai điểm về hai phía của trục tung thì m-1<0

hay m<1

c: Để (P) cắt (d) tại hai điểm phân biệt có hoành độ dương thì 

\(\left\{{}\begin{matrix}\left(-m\right)^2-4\left(m-1\right)>0\\m>0\\m-1>0\end{matrix}\right.\Leftrightarrow m>1\)