Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)
b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)
\(\Rightarrow x^2-2mx-5=0\left(I\right)\)
Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt.
c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)
Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)
Vậy không có m thỏa mãn ycbt.
a: PTHĐGĐ là;
1/2x^2-mx-2=0
a=1/2; b=-m; c=-2
Vì a*c<0 nên (d) luôn cắt (P) tại hai điểm phân biệt
\(a,M\in\left(d\right)\Rightarrow a.0+b.2=-2\)
\(\Rightarrow b=-1\)
\(\Rightarrow\left(d\right)ax-y=-2\)
\(\Rightarrow\left(d\right)y=ax+2\)
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(\frac{x^2}{4}=ax+2\)
\(\Leftrightarrow x^2-4ax-8=0\)(1)
Có \(\Delta'=4a^2+8>0\)
Nên pt (1) luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B
b, Gọi 2 điểm A và B có tọa độ là \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=4a\\x_1x_2=-8\end{cases}}\)
Vì \(A;B\in\left(P\right)\Rightarrow\hept{\begin{cases}y_1=\frac{x_1^2}{4}\\y_2=\frac{x_2^2}{4}\end{cases}}\)
Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(y_1+y_2\right)^2-4y_1y_2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1^2+x_2^2}{4}\right)^2-4.\frac{x_1^2x_2^2}{4.4}}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{4}-\frac{x_1^2x_2^2}{4}}\)
\(=\sqrt{16a^2+32+\frac{\left(16a^2+16\right)^2}{4}-\frac{64}{4}}\)
\(\ge\sqrt{16.0+32+\frac{\left(16.0+16\right)^2}{4}-\frac{64}{4}}=4\sqrt{5}\)
Dấu "=" <=> a = 0
a: (d) có hệ số góc là m nên (d): y=mx+b
Thay x=-1 và y=-2 vào (d), ta được:
\(m\cdot\left(-1\right)+b=-2\)
=>b-m=-2
=>b=m-2
=>(d): y=mx+m-2
Phương trình hoành độ giao điểm là:
\(-x^2=mx+m-2\)
=>\(-x^2-mx-m+2=0\)
=>\(x^2+mx+m-2=0\)(1)
\(\text{Δ}=m^2-4\cdot1\cdot\left(m-2\right)\)
\(=m^2-4\left(m-2\right)\)
\(=m^2-4m+8=\left(m-2\right)^2+4>=4\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
b: Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì phương trình (1) phải có hai nghiệm phân biệt trái dấu
=>1(m-2)<0
=>m-2<0
=>m<2
quá dễ
Ko khó