K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

\(mx^2+2m-x=4m+2\)

\(\Leftrightarrow mx^2-x-2m-2=0\)

\(\Leftrightarrow x\left(mx-1\right)-2m-2=0\)

Để phương trình có nghiệm duy nhất :

\(\Leftrightarrow mx-1\ne0\)

\(\Leftrightarrow m\ne\frac{1}{x}\)

Ta có : \(x+5=m\Leftrightarrow x=m-5\)

Thay vào trên ta có :
\(m\ne\frac{1}{m-5}\Leftrightarrow m-\frac{1}{m-5}\ne0\)

\(\Leftrightarrow m^2-5m-1\ne0\)

\(\Leftrightarrow\hept{\begin{cases}m\ne\frac{5-\sqrt{29}}{2}\\m\ne\frac{5+\sqrt{29}}{2}\end{cases}}\)

Chúc bạn học tốt !!!

NV
23 tháng 4 2021

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)

2 tháng 3 2021

( m2 - 1 )x2 + ( m - 1 )x - 4m2 + m = 0

Để phương trình có nghiệm x = 2

thì ( m2 - 1 ).4 + ( m - 1 ).2 - 4m2 + m = 0

<=> 4m2 - 4 + 2m - 2 - 4m2 + m = 0

<=> 3m - 6 = 0

<=> m = 2

Vậy với m = 2 thì phương trình nhận x = 2 làm nghiệm

2 tháng 3 2021

Vì phương trình có nghiệm là 2 

Nên thay x = 2 vào phương trình trên ta được :

\(4m^2-4+2m-2-4m^2+m=0\)

\(\Leftrightarrow-6+3m=0\Leftrightarrow m=2\)

Vậy với x = 2 thì m = 2

1 tháng 1 2017

a) thay x=-5 vào pt

=>-10-4m=6

=>m=-4

vậy m=-4 là giá trị cần tìm 

b) tương tự

4 tháng 3 2019

Ý a mình viết nhầm để có nghiệm là -2 nha các bạn

4 tháng 3 2019

a) Thay x = -2 vào:

\(8+2\left(4m-1\right)+15-m=0\)

\(\Leftrightarrow21+7m=0\Leftrightarrow m=-3\)

b)Thay m = - 3 vào pt: \(2x^2+13x+18=0\Leftrightarrow\left(x+2\right)\left(2x+9\right)=0\)

Đến đây bí.

<=> (m-5)x = 10 - 4m2

TH1: m - 5 = 0 <=> m = 5

Thay m = 5, ta có :

0x = 10 - 4.52

<=> 0x = -90 (vô lí)

Vậy với m =5, phương trình vô nghiệm

TH2: m-5 \(\ne\)0 <=> \(m\ne5\)

Phương trình có nghiệm duy nhất : \(x=\frac{10-4m^2}{m-5}\)

1 tháng 4 2019

Mx hay mx mũ 2 b ơi. B xóa bài ghi lại bài mới nha

là mx mũ 2 , mình ghi lộn