Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=2 thì (1) sẽ là x^2+2x+1=0
=>x=-1
b:x1+x2=52
=>2m-2=52
=>2m=54
=>m=27
\(\Delta'=\left(m+3\right)^2-\left(m^2-3\right)=m^2+6m+9-m^2+3=6m+12\)
Để pt có 2 nghiệm khi m >= -2
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=m^2-3\end{matrix}\right.\)
\(\left(x_1+x_2\right)^2-3x_1x_2=22\Leftrightarrow4\left(m+3\right)^2-3m^2+9=22\)
\(\Leftrightarrow m^2+24m+23=0\Leftrightarrow m=-1\left(tm\right);m=-23\left(l\right)\)
a: Khi x=-2 thì pt sẽ là;
4+4+m-2=0
=>m+6=0
=>m=-6
=>x^2-2x-8=0
=>(x-4)(x+2)=0
=>x=4 hoặc x=-2
b: 1/x1+1/x2=2
=>(x1+x2)/(x1x2)=2
=>2/(m-2)=2
=>m-2=1
=>m=3
a)
Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot1\cdot\left(m-3\right)\)
\(=\left(-2m-4\right)^2-4\left(m-3\right)\)
\(=4m^2+16m+16\ge0\forall x\)
Suy ra: Phương trình \(x^2-2\left(m+2\right)x+m-3=0\) luôn có nghiệm với mọi m
Áp dụng hệ thức Viet, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)=2m+4\\x_1\cdot x_2=m-3\end{matrix}\right.\)
Ta có: \(\left(2x_1+1\right)\left(2x_2+1\right)=8\)
\(\Leftrightarrow4\cdot x_1x_2+2\cdot\left(x_1+x_2\right)+1=8\)
\(\Leftrightarrow4\left(m-3\right)+2\left(2m+4\right)+1=8\)
\(\Leftrightarrow4m-12+4m+8+1=8\)
\(\Leftrightarrow8m=8+12-8-1\)
\(\Leftrightarrow8m=11\)
hay \(m=\dfrac{11}{8}\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b)
Ta có: \(x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(\Rightarrow P=4m^2+11m+31=4m^2+2\cdot m\cdot\dfrac{11}{2}+\dfrac{121}{4}+\dfrac{3}{4}\) \(=\left(2m+\dfrac{11}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow2m+\dfrac{11}{2}=0\Leftrightarrow m=-\dfrac{11}{4}\)
Vậy \(P_{Min}=\dfrac{3}{4}\) khi \(m=-\dfrac{11}{4}\)
b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)
\(=4m^2+12m+9-16m-8\)
\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có:
\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=4m+2\)
\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)
\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)
\(\Leftrightarrow40m^2-112m-98=0\)
\(\Leftrightarrow40m^2-140m+28m-98=0\)
=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)
=>(2m-7)(20m+14)=0
=>m=7/2 hoặc m=-7/10
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để phương trình có hai nghiệm phân biệt thì -8m+24>0
=>m<3
x1+x2=2x1x2
=>2(2m-2)=4
=>2m-2=2
=>2m=4
=>m=2(nhận)
b) Theo hệ thức Vi-et ta có:
Theo bài ra:
3 x 1 - x 2 = 8
⇔ 3 x 1 - x 2 = 2( x 1 + x 2 )
⇔ x 1 = 3 x 2
Khi đó: x 1 + x 2 = 4 ⇔ 3 x 2 + x 2 = 4 ⇔ 4 x 2 = 4 ⇔ x 2 = 1
⇒ x 1 = 3
⇒ x 1 x 2 = 3 ⇒ m - 2 = 3 ⇔ m = 5
Vậy với m = 5 thì phương trình có 2 nghiệm thỏa mãn yêu cầu đề bài.