Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
đặt \(\left(x^2+x\right)=t\) ta có
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2+6t-2t-12=0\)
\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường
a: Khi k=0 thì PT sẽ là:
9x^2-25=0
=>x=5/3 hoặc x=-5/3
b: Thay x=-1 vào pt, ta sẽ được:
-k^2+2k+9-25=0
=>-k^2+2k-16=0
=>\(k\in\varnothing\)
Thay x = 1/2 vào phương trình, ta có:
ĐKXĐ:
⇔ (1 + 2a)(2a + 1) + (1 – 2a)(2a – 1) = 4a(3a + 1)
⇔ 2a + 1 + 4 a 2 + 2a + 2a – 1 – 4 a 2 + 2a = 12 a 2 + 4a
⇔ 12 a 2 – 4a = 0 ⇔ 4a(3a – 1) = 0 ⇔ 4a = 0 hoặc 3a – 1 = 0
⇔ a = 0 (thỏa mãn) hoặc a = 1/3 (thỏa mãn)
Vậy khi a = 0 hoặc a = 1/3 thì phương trình x + a a - x + x - a a + x = a 3 a + 1 a 2 - x 2 có nghiệm x = 1/2
a) Thay n=-2 vào phương trình, ta được:
\(\dfrac{x+2}{x-2}+\dfrac{x-2}{x+2}=\dfrac{-2\left(-2\cdot2+1\right)}{\left(-2\right)^2-x^2}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+4x+4+x^2-4x+4+6=0\)
\(\Leftrightarrow2x^2+14=0\)(Vô lý)
Vậy: Khi n=-2 thì phương trình vô nghiệm
CẢM ƠN BẠN NHIỀU NHA!