K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

\(a)\) Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(1-m\right)^2-m^2+3m=1-2m+m^2-m^2+3m=m+1>0\)\(\Leftrightarrow\)\(m>-1\)

Vậy để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(m>-1\)

\(b)\) Ta có : \(T=x_1^2+x_2^2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(T=\left(x_1+x_2\right)^2-2x_1x_2+\left(1-m\right)\left(x_1+x_2\right)+m^2-3m\)

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(1-m\right)\\x_1x_2=m^2-3m\end{cases}}\)

\(\Rightarrow\)\(T=4\left(1-m\right)^2-2\left(m^2-3m\right)-2\left(1-m\right)\left(1-m\right)+m^2-3m\)

\(T=4m^2-8m+4-2m^2+6m-2m^2+4m-2+m^2-3m\)

\(T=m^2-m+2=\left(m^2-m+\frac{1}{4}\right)+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=\frac{1}{2}\) ( thoả mãn ) 

Vậy GTNN của \(T=\frac{7}{4}\) khi \(m=\frac{1}{2}\)

NV
20 tháng 5 2019

a/ \(\Delta'=\left(m-1\right)^2-\left(m^2-3m\right)=m+1>0\Rightarrow m>-1\)

b/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(T=x_1^2+x_2^2+2x_1x_2-2x_1x_2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(=\left(x_1+x_2\right)^2-2x_1x_2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)

\(=4\left(m-1\right)^2-2\left(m^2-3m\right)-2\left(m-1\right)\left(m-1\right)+m^2-3m\)

\(=m^2-m+2=m^2-m+\frac{1}{4}+\frac{7}{4}\)

\(=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)

\(\Rightarrow T_{min}=\frac{7}{4}\) khi \(m=\frac{1}{2}\)

20 tháng 5 2019

hihaKhiếp thật! Sao thầy giáo bạn lúc nào cx cho mấy câu hỏi oái oăm z? Ko, phải là khù khoằm ms đúng! Mình đây cực kỳ ngu toán đại, chỉ thích học hình thui!! Thông cảm!!

18 tháng 5 2019

\(x^2-4x-m^2=0\) (1) 

\(a)\) Để pt (1) có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(-2\right)^2-\left(-m\right)^2=4+m^2>0\) ( luôn đúng ) 

Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m

\(b)\) Ta có : \(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1+x_2\right)\left(x_1-x_2\right)\right|\)

\(\Leftrightarrow\)\(A^2=\left(x_1+x_2\right)^2\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2\left(x_1^2+x_2^2-2x_1x_2\right)=\left(x_1+x_2\right)^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]\) (*)

Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=4\\x_1x_2=-m^2\end{cases}}\)

(*) \(\Leftrightarrow\)\(A^2=4^2\left[4^2-4\left(-m^2\right)\right]=16\left(16+4m^2\right)=64m^2+256\ge256\)

\(\Leftrightarrow\)\(A\ge\sqrt{256}=16\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(64m^2=0\)\(\Leftrightarrow\)\(m=0\)

Vậy GTNN của \(A=16\) khi \(m=0\)

18 tháng 5 2019

a,\(x^2-4x-m^2=0\)(*)

\(\Delta=4^2-4\left(-m^2\right)=16+4m^2\ge16>0\)

Vậy pt luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b,\(x_1=\frac{4-\sqrt{4m^2+16}}{2};x_2=\frac{4+\sqrt{4m^2+16}}{2}\)

\(\Rightarrow\left|x_1+x_2\right|=\left|\frac{4-\sqrt{4m^2+16}+4+\sqrt{4m^2+16}}{2}\right|=\left|\frac{8}{2}\right|=4\)

pt luôn = 4

18 tháng 5 2019

Sửa câu b

\(A=\left|x_1^2-x_2^2\right|=\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=\left|\left(\frac{4-\sqrt{4m^2+16}}{2}-\frac{4+\sqrt{4m^2+16}}{2}\right)\left(\frac{4-\sqrt{4m^2+16}}{2}+\frac{4+\sqrt{4m^2+16}}{2}\right)\right|\)\(\Leftrightarrow A=\left|-\left(\sqrt{4m^2+16}\right).4\right|\)

Vì \(4m^2+16>0\)

\(\Rightarrow A=\sqrt{4m^2+16}.4\ge\sqrt{16}.4=4^2=16\)

Vậy MinA = 16

NV
12 tháng 4 2021

a. Bạn tự giải

b.

\(\Delta=\left(3m-1\right)^2-4\left(2m^2+2m\right)=m^2-14m+1\)

Pt có 2 nghiệm pb khi \(m^2-14m+1>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=2m^2+2m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2+2m\right)=4\)

\(\Leftrightarrow m^2-14m-3=0\Rightarrow m=7\pm2\sqrt{13}\) (đều thỏa mãn (1))

26 tháng 5 2021

Xét \(\Delta=\text{​​}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)

=> Pt luôn có hai nghiệm pb

Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)

\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)

\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)

\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)

Vậy m=0

10 tháng 4 2023

a, Thay \(m=-3\) vào \(\left(1\right)\)

\(x^2-2.\left(m-1\right)x-m-3=0\\ \Leftrightarrow x^2-2.\left(-3-1\right)x+3-3=0\\ \Leftrightarrow x^2+8x=0\\ \Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Vậy với \(m=-3\) thì \(x=0;x=-8\)

b,  

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)\\ =m^2-2m+1+m+3\\ =m^2-m+4\)

phương trình có hai nghiệm phân biệt

 \(\Delta'>0\\ m^2-m+4>0\\ \Rightarrow m^2-2.\dfrac{1}{2}m+\dfrac{1}{4}+\dfrac{7}{2}>0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0\left(lđ\right)\)

\(\Rightarrow\forall m\)

Áp dụng hệ thức Vi ét :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow x_1^2+2x_1.x_2+x^2_2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4m^2-5\left(x_1+x_2\right)\\ \Leftrightarrow\left(2.\left(m-1\right)\right)^2-4.\left(-m-3\right)=4m^2-5.\left(-m-3\right)\\ \Leftrightarrow4m^2-8m+4+4m+12-4m^2-5m-15=0\\ \Leftrightarrow-9m+1=0\\ \Leftrightarrow m=\dfrac{1}{9}\)

Vậy \(m=\dfrac{1}{9}\)

10 tháng 4 2023

a.

Thế m = -3 vào phương trình (1) ta được:

\(x^2-2\left(-3-1\right)x-\left(-3\right)-3=0\)

\(\Leftrightarrow\) \(x^2+8x=0\)

 \(\Leftrightarrow x\left(x+8\right)=0\\ \Rightarrow x_1=0,x_2=-8\)

b.

Để phương trình (1) có hai nghiệm phân biệt thì:

\(\Delta>0\\ \Leftrightarrow\left[-2\left(m-1\right)\right]^2-4.1.\left(-m-3\right)>0\)

\(\Leftrightarrow4.\left(m^2-2m+1\right)+4m+12>0\)

\(\Leftrightarrow4m^2-8m+4+4m+12>0\)

\(\Leftrightarrow4m^2-4m+16>0\)

\(\Leftrightarrow\left(2m\right)^2-4m+1+15>0\)

\(\Leftrightarrow\left(2m-1\right)^2+15>0\)

Vì \(\left(2m-1\right)^2\) luôn lớn hơn hoặc bằng 0 với mọi m nên phương trình (1) có nghiệm với mọi m.

Theo viét:

\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m-3\end{matrix}\right.\) (I)

có:

\(\left(x_1-x_2\right)^2=4m^2-5x_1+x_2\)

<=> \(x_1^2-2x_1x_2+x_2^2-4m^2+5x_1-x_2=0\)

<=> \(x_1^2-2x_1x_2+x_2^2+2x_1x_2-2x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(x_1+x_2\right)^2-4x_1x_2-4m^2+5x_1-x_2=0\)

<=> \(\left(2m-2\right)^2-4.\left(-m-3\right)-4m^2+5x_1-x_2=0\)

<=> \(4m^2-8m+4+4m+12-4m^2+5x_1-x_2=0\)

<=> \(-4m+16+5x_1-x_2=0\)

<=> \(5x_1-x_2=4m-16\) (II)

Từ (I) và (II) ta có:

\(\left\{{}\begin{matrix}5x_1-x_2=4m-16\left(2\right)\\x_1+x_2=2m-2\left(3\right)\\x_1x_2=-m-3\left(4\right)\end{matrix}\right.\)

Từ (2) ta có:

\(x_1=\dfrac{4m-16+x_2}{5}=\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2\) (x)

Thế (x) vào (3) được:

\(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2=2m-2\)

<=> \(\dfrac{4}{5}m-3,2+\dfrac{1}{5}x_2+x_2-2m+2=0\)

<=>  \(-1,2m-1,2+1,2x_2=0\)

<=> \(x_2=1,2m+1,2\) (xx)

Thế (xx) vào (3) được:

\(x_1+1,2m+1,2=2m-2\)

<=> \(x_1+1,2m+1,2-2m+2=0\)

<=> \(x_1-0,8m+3,2=0\)

<=> \(x_1=-3,2+0,8m\) (xxx)

Thế (xx) và (xxx) vào (4) được:

\(\left(-3,2+0,8m\right)\left(1,2m+1,2\right)=-m-3\)

<=> \(-3,84m-3,84+0,96m^2+0,96m+m+3=0\)

<=> \(0,96m^2-1,88m-0,84=0\)

\(\Delta=\left(-1,88\right)^2-4.0,96.\left(-0,84\right)=6,76\)

\(m_1=\dfrac{1,88+\sqrt{6,76}}{2.0,96}=\dfrac{7}{3}\left(nhận\right)\)

\(m_2=\dfrac{1,88-\sqrt{6,76}}{2.0,96}=-\dfrac{3}{8}\left(nhận\right)\)

T.Lam

a:Sửa đề: x^2-(m+1)x+2m-8=0

Khi m=2 thì (1) sẽ là x^2-3x-4=0

=>(x-4)(x+1)=0

=>x=4 hoặc x=-1

b: Δ=(-m-1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24>0

=>(1) luôn có hai nghiệm pb

\(x_1^2+x_2^2+\left(x_1-2\right)\left(x_2-2\right)=11\)

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2+4=11

=>m^2-2m=0

=>m=0 hoặc m=2

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)