Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ptr có nghiệm `<=>\Delta' > 0`
`<=>(-m)^2-2m+1 > 0`
`<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`
Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`
`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`
`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`
`<=>(1-2m+3)(1-2m-2)=50`
`<=>(4-2m)(-1-2m)=50`
`<=>-4-8m+2m+4m^2=50`
`<=>4m^2-6m-54=0`
`<=>4m^2+12m-18m-54=0`
`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}` (t/m)
a: Δ=(2m-1)^2-4*(-m)
=4m^2-4m+1+4m=4m^2+1>0
=>Phương trình luôn có nghiệm
b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(2m-1\right)^2-3\left(-m\right)\)
=4m^2-4m+1+3m
=4m^2-m+1
=4(m^2-1/4m+1/4)
=4(m^2-2*m*1/8+1/64+15/64)
=4(m-1/8)^2+15/16>=15/16
Dấu = xảy ra khi m=1/8
`a)Delta`
`=m^2-4(m-1)`
`=m^2-4m+4`
`=(m-2)^2>=0`
`=>` pt luôn có nghiệm với mọi m
b)Áp dụng vi-ét:
`x_1+x_2=m,x_1.x_2=m-1`
`=>x_1^2+x_2^2`
`=(x_1+x_2)^2-2x_1.x_2`
`=m^2-2(m-1)`
`=m^2-2m+1`
Với `m=3`
`=>x_1^2+x_2^2=9-6+1=4`
PT $(*)$ là PT bậc nhất ẩn $x$ thì làm sao mà có $x_1,x_2$ được hả bạn?
PT cuối cũng bị lỗi.
Bạn xem lại đề!
a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)
\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)
a*c<0
=>Phương trình luôn có hai nghiệm
x1^2+x2^2=12
=>(x1+x2)^2-2x1x2=12
=>(2m)^2-2*(-2)=12
=>4m^2+4=12
=>m^2+1=3
=>m^2=2
=>\(m=\pm\sqrt{2}\)
\(ac=-2< 0\Rightarrow\) phương trình đã cho luôn có 2 nghiệm (trái dấu)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2\end{matrix}\right.\)
\(x_1^2+x_2^2=12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)
\(\Leftrightarrow4m^2+4=12\)
\(\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)
Lời giải:
a) $\Delta'=m^2-(m-1)=m^2-m+1=(m-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b)
Theo định lý Viet:
$x_1+x_2=2m$
$x_1x_2=m-1$
c)
$A=2mx_1+x_2^2-2mx_2-x_1^2+1$
$=2m(x_1-x_2)+x_2^2-x_1^2+1$
$=(x_1+x_2)(x_1-x_2)+x_2^2-x_1^2+1$
$=x_1^2-x_2^2+x_2^2-x_1^2+1$
$=1$
$=