K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2020

phương trình vô nghiệm: 

\(\Delta'< 0\Leftrightarrow\left(m+1\right)^2-4< 0\Leftrightarrow-2< m-1< 2\Leftrightarrow-1< m< 3\)

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

10 tháng 9 2019

5 tháng 5 2019

m 2 x + m + 4 y = 2 m x + y = 1 − y ⇔ m 2 x + m + 4 y = 2 m x + m + 1 y = 1

Ta có:  D = m 2 m + 4 m m + 1 = m 3 − 4 m = m m 2 − 4

D x = 2 m + 4 1 m + 1 = 2 m + 1 − m − 4 = m − 2

D y = m 2 2 m 1 = m 2 − 2 m

Nếu  D = 0 ⇔ m m 2 - 4 = 0 ⇔ m = 0 m = ± 2

+) Với  m = 0 ⇒ D x ≠ 0  nên hệ phương trình vô nghiệm

+) Với   m = 2 ⇒ D x = D y = 0  nên hệ phương trình có vô số nghiệm

+) Với  m = - 2 ⇒ D x ≠ 0 nên hệ phương trình vô nghiệm

Vậy với  m = 0  hoặc  m = - 2  thì hệ phương trình vô nghiệm

Đáp án cần chọn là: A

4 tháng 2

Đặt \(t=2^x>0\).

Phương trình ban đầu trở thành: \(t^2-4t+m=0\) (*)

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt dương:

\(\left\{{}\begin{matrix}\Delta'>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-m>0\\4>0\left(đúng\right)\\m>0\end{matrix}\right.\Leftrightarrow0< m< 4\)

25 tháng 6 2019

Phương trình ax + b = 0 hoặc ax = b vô nghiệm khi a= 0 và b ≠ 0 .

Xét phương án C:

m m x - 1 = m 2 + 1 x - m ⇔ m 2 x = m 2 x + 1 - m

⇔ 0 x = 1   (vô lí) nên phương trình này vô nghiệm.

Chọn C.

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
20 tháng 1 2022

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)