K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

Hình tự vẽ nha!

Vì PQ=PR suy ra tg PQR cân tại P

suy ra : góc PQR=180−P2180−P2(180 độ, góc P)(1)

Ta có PQ=PR và PM=PN(gt)

vì PM=PN suy ra tg PMN cân tại P

suy ra : góc PMN=180−P2180−P2(2)

Từ (1),(2) ta có :góc  PQR= góc PMN

mà 2 góc ở vị trí đồng vị suy ra MN // QR

suy ra QMNR là hình thang (3)

Vì PQ=PR và PM=PN 

suy ra PQ-PM = PR-PN

suy ra MQ=NR(4)

TỪ (3) (4) suy ra QMNR là hình thang cân.

8 tháng 3 2018
là câu a
8 tháng 3 2018

Ta có: ^BIC = 90o (do chắn đk BC) 
mà ^OMD = 90o (do DE _|_AB) 
=> tg BDMI nội tiếp 

26 tháng 2 2021

a) Kẻ Ax là tiếp tuyến của đường tròn (O)  

=> Ax ⊥ AO tại A (1)

Ta có :  \(\widehat{xAB} = \widehat{ABC} \) ( góc tạo bởi tiếp tuyến và dây và góc nội tiếp chắn \(\widehat{AC}\) ) 

Lại có :  \(\begin{cases} \widehat{ABC} + \widehat{ACB} + \widehat{BAC} = 180^o\\ \widehat{ADQ} + \widehat{AQD} + \widehat{BAC} = 180^o \end{cases} \)

Mà \(\widehat{AQD} = \widehat{ACB}\) ( 2 góc nội tiếp cùng chắn cung \(\widehat{BD} \) ) 

=> \(\widehat{ABC} = \widehat{ADB} \)  => Ax // QD (2) 

Từ (1) và (2) => QD ⊥ AO