K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

Ta có : a - b + c = 2 + 5 - 7 = 0 

Vậy pt có 2 nghiệm 

x1 = -1; x2 = 7/2 

3 tháng 2 2022

có ai bt giải ko

 

7 tháng 4 2022

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

7 tháng 4 2022

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

16 tháng 3 2022

1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)

\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)

\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)

15 tháng 11 2019

a) \(\left(\left|x_1-x_2\right|\right)^2=\left(x_1+x_2\right)^2-2x_1x_2\)sau đó em sử dụng định lí viet

=> \(\left|x_1-x_2\right|\)

b)

Viet: \(x_1x_2=3;x_1+x_2=5\)=> pt có 2 nghiệm dương

=> \(\left|x_1\right|+\left|x_2\right|=x_1+x_2\)= 5

2 tháng 7 2023

Theo vi et: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2020}{1}=-2020\\x_1x_2=\dfrac{c}{a}=\dfrac{2021}{1}=2021\end{matrix}\right.\)

a

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-2020}{2021}\)

b

\(x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-2020\right)^2-2.2021=4076358\)

2 tháng 7 2023

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{1}{1}=1\\x_1x_2=\dfrac{c}{a}=-\dfrac{3}{1}=-3\end{matrix}\right.\)

a

\(A=x_1^2+x_2^2=x_1^2+2x_1x_2+x_2^2-2x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2=1^2-2.\left(-3\right)=1+6=7\)

b

\(B=x_1^2x_2+x_1x_2^2=x_1x_2\left(x_1+x_2\right)=\left(-3\right).1=-3\)

c

\(C=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2}{x_1x_2}+\dfrac{x_1}{x_1x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{-3}=-\dfrac{1}{3}\)

d

\(D=\dfrac{x_2}{x_1}+\dfrac{x_1}{x_2}=\dfrac{x_2^2}{x_1x_2}+\dfrac{x_1^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\dfrac{1^2-2.\left(-3\right)}{-3}=\dfrac{1+6}{-3}=\dfrac{7}{-3}=-\dfrac{3}{7}\)

10 tháng 3 2022

\(\Delta'=\left(-2\right)^2-3.\left(-8\right)=4+24=28>0.\)

\(\Rightarrow\) Pt có 2 nghiệm phân biệt \(x_1;x_2.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{2+2\sqrt{7}}{3}.\\x_2=\dfrac{2-2\sqrt{7}}{3}.\end{matrix}\right.\)

(căn x1+căn x2)^2=x1+x2+2*căn x1x2

=12+2*căn 4=16

=>căn x1+căn x2=4

\(T=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{4}=\dfrac{12^2-2\cdot4}{4}=34\)

\(A=\dfrac{\left(x_1+x_2\right)^2+3x_1x_2}{4x_1x_2\left(x_1+x_2\right)}=\dfrac{9+3}{4\cdot1\left(-3\right)}=\dfrac{12}{-12}=-1\)

NV
18 tháng 8 2021

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2}{1}=-2\\x_1x_2=\dfrac{-1}{1}=-1\end{matrix}\right.\)

\(\Rightarrow T=x_1+x_2+3x_1x_2=-2+3.\left(-1\right)=-5\)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)

Ta có: \(T=x_1+x_2+3x_1x_2\)

\(=-2+3\cdot\left(-1\right)\)

=-5