K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2023

9 tháng 4 2023

\(3x^2+5x-6=0\\ \Delta=5^2-4.3.\left(-6\right)=97\\ \Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{97}}{2}\\x_2=\dfrac{-5-\sqrt{97}}{2}\end{matrix}\right.\)

\(\left(x_1-2x_2\right).\left(2x_1-x_2\right)=2x^2_1-4x_1x_2+2x_2^2\)

\(=2.\left(\dfrac{-5+\sqrt{97}}{2}\right)^2-4.\left(\dfrac{-5+\sqrt{97}}{2}\right).\left(\dfrac{-5-\sqrt{97}}{2}\right)+2.\left(\dfrac{-5-\sqrt{97}}{2}\right)^2\\ =\left(\dfrac{-5+\sqrt{97}}{2}\right)^2-2.\left(\dfrac{-5+\sqrt{97}}{2}\right).\left(\dfrac{-5-\sqrt{97}}{2}\right)+\dfrac{\left(-5-\sqrt{97}\right)^2}{2^2}\\ =\left(\dfrac{-5+\sqrt{97}}{2}-\dfrac{-5-\sqrt{97}}{2}\right)^2\\ =\left(\dfrac{-5+\sqrt{97}+5+\sqrt{97}}{2}\right)^2\\ =\left(\dfrac{2\sqrt{97}}{2}\right)^2\\ =\left(\sqrt{97}\right)^2=97\)

 

26 tháng 4 2016

a) tính đen ta chứng minh đen ta luôn lớn hơn 0

b) dùng viet  tính tổng và tích hai nghiệm

Đưa A về dạng có chưa tổng tích hai nghiệm

29 tháng 5 2023

a) Do a = 3; c = -7 nên a và c trái dấu

Vậy phương trình luôn có hai nghiệm phân biệt

b) Theo Viét ta có:

x₁ + x₂ = -4/3

x₁x₂ = -7/3

Ta có:

2x₁ - (x₁ - x₂ - x₁x₂)

= 2x₁ - x₁ + x₂ + x₁x₂

= x₁ + x₂ + x₁x₂

= -4/3 - 7/3

= -11/3

29 tháng 5 2023

\(3x^2+4x-7=0\)

\(a,\) Để pt có 2 nghiệm phân biệt thì \(\Delta>0\Rightarrow4^2-4.3.\left(-7\right)=100>0\)

Vậy pt có 2 nghiệm phân biệt \(x_1,x_2\)

\(b,\)Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{4}{3}\\x_1x_2=\dfrac{c}{a}=-\dfrac{7}{3}\end{matrix}\right.\)

Ta có : \(2x_1-\left(x_1-x_2-x_1x_2\right)\)

\(=2x_1-x_1+x_2-x_1x_2\)

\(=x_1+x_2-x_1x_2\)

\(=-\dfrac{4}{3}-\left(-\dfrac{7}{3}\right)\)

\(=-\dfrac{4}{3}+\dfrac{7}{3}\)

\(=\dfrac{3}{3}=1\)

Vậy giá trị của biểu thức là \(1\)

 

8 tháng 5 2022

Ptr có: `\Delta' = b'^2-ac=(-1)^2-(-4)=5 > 0`

 `=>` Ptr có `2` nghiệm pb

`=>` Áp dụng Vi-ét: `{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=-4):}`

Có: `T=x_1(x_1-2x_2)+x_2(x_2-2x_1)`

  `=>T=x_1 ^2 - 2x_1.x_2+x_2 ^2 - 2x_1.x_2`

  `=>T=(x_1+x_2)^2-6x_1.x_2`

  `=>T=2^2-6(-4)=28`

8 tháng 5 2022

cảm ơn ạ

 

21 tháng 5 2018

a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)

\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)

\(=m^2-2m+1+6m+7\)

\(=m^2+4m+8\)

\(=m^2+2.m.2+2^2+4\)

\(=\left(m+2\right)^2+4>0,\forall m\)

Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m 

25 tháng 3 2023

\(2x^2-6x-3=0\)

\(\Delta'=3^2+3.2=15>0\)

⇒ Phương trình có hai nghiệm phân biệt.

Theo hệ thức viét có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Ta có : \(A=x_1^2x_2^2-2x_1-2x_2=\left(x_1x_2\right)^2-2\left(x_1+x_2\right)=\left(-\dfrac{3}{2}\right)^2-2.3=-\dfrac{15}{4}\)

Vậy \(A=-\dfrac{15}{4}\) thì thỏa mãn điều kiện bài ra.

16 tháng 6 2021

PT có 2 nghiệm phân biệt `<=> \Delta>0`

`<=>3^2-4m>0`

`<=>m<9/4`

Viet: 

`x_1+x_2=-3` (1)

`x_1x_2=m` (2)

Theo đề: `x_2=2x_1 <=> 2x_1-x_2=0` (3)

Từ (1) và (3) ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-3\\2x_1-x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-2\end{matrix}\right.\)

Thay vào (2): `(-1).(-2) = m <=> m=2`