K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(\Delta\)' = (m+1)2-2m+5 = m2 +2m +1 - 2m +5 =m2 +6 >0 nên pt đã cho luôn có 2 nghiệm x1,x2 phân biệt với mọi m .

Ta có : (x12 -2mx1+2m-1)(x22 -2mx2 +2m+1)<0 (*)

Vì x1,x2 là nghiệm của phương trình 1 nên ta có :

x12 -2mx1+2x1 +2m -5 = 0 => x12 -2mx1+2m-1 +2x1 -4 =0

=>x12 -2mx1+2m-1 = 4-2x1 Tương tự ta có : x22 -2mx2+2m-1 = 4-2x2

khi đó (*) trở thành : (4-2x1)(4-2x2) <0 =>16-8x2-8x1+4x1x2 < 0

<=> 16-8(x1+x2)+4x1x2 <0

vì phương trình đầu luôn có 2 nghiệm phân biệt với mọi m nên theo hệ thức viét ta có :\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)thay vào bất pt trên ta đc :

16-8.2(m-1)+4(2m-5)<0 => 16-16m+16+8m-20<0

12-8m<0 => m>\(\dfrac{3}{2}\)

Vậy m>\(\dfrac{3}{2}\)thì có 2 nghiệm x1 x2 thỏa mãn đề bài .

29 tháng 5 2023

Ptr có nghiệm `<=>\Delta' > 0`

   `<=>(-m)^2-2m+1 > 0`

  `<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`

Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`

`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`

`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`

`<=>(1-2m+3)(1-2m-2)=50`

`<=>(4-2m)(-1-2m)=50`

`<=>-4-8m+2m+4m^2=50`

`<=>4m^2-6m-54=0`

`<=>4m^2+12m-18m-54=0`

`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}`  (t/m)

6 tháng 3 2023

học tốt nhé !

6 tháng 3 2023

2 nghiệp pt phải:

 (2m - 1)2-4(m2 - 1)≥0

Vì x1 là nghiệm nên

x21−(2m−1)x1+m2−1=0

<=> x12−(2m−1)x1+m2−1=0

<=>x12−2mx1+m2=x1+1

<=> 9m2=0 <=>m=0

#YQ

6 tháng 3 2023

9m2=0 là sao ạ

22 tháng 5 2021

a/ \(x^2-\left(2m+1\right)x+m=0\)

\(\Delta=[-\left(2m+1\right)]^2-4m=4m^2+4m+1-4m=4m^2+1\)

vi 1>0

4m2≥0(với mọi m)

Nên 4m2+1>0(với mọi m)

Vậy pt luôn có 2 nghiệm phân biệt với mọi m

22 tháng 5 2021

b)Theo định lí viet \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m\end{matrix}\right.\)

Do \(x_1\) là nghiệm của pt

\(\Rightarrow x_1^2-\left(2m+1\right)x_1+m=0\) \(\Leftrightarrow x_1^2-x_1=2mx_1-m\)

\(A=x_1^2-x_1+2mx_2+x_1x_2\)

\(=2mx_1-m+2mx_2+x_1x_2\)\(=2m\left(x_1+x_2\right)-m+x_1x_2\)\(=2m\left(2m+1\right)-m+m\)\(=4\left(m+\dfrac{1}{4}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall m\)

Dấu = xra khi \(m=-\dfrac{1}{4}\)

Vậy minA=\(-\dfrac{1}{4}\)khi \(m=-\dfrac{1}{4}\) 

 

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

NV
2 tháng 7 2021

Giả sử pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1^2+x_2^2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n=-1\\m=-1\end{matrix}\right.\)

16 tháng 5 2021

a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v