Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có: `\Delta'=(m-2)^2-(m^2-4m)=m^2-4m+4-m^2+4m=4>0 forall m`
`=>` PT luôn có 2 nghiệm phân biệt với mọi `m`.
b) Viet: `x_1+x_2=-2m+4`
`x_1x_2=m^2-4m`
`3/(x_1) + x_2=3/(x_2)+x_1`
`<=> 3x_2+x_1x_2^2=3x_1+x_1^2 x_2`
`<=> 3(x_1-x_2)+x_1x_2(x_1-x_2)=0`
`<=>(x_1-x_2).(3+x_1x_2)=0`
`<=> \sqrt((x_1+x_2)^2-4x_1x_2) .(3+x_1x_2)=0`
`<=> \sqrt((-2m+4)^2-4(m^2-4m)) .(3+m^2-4m)=0`
`<=> 4.(3+m^2-4m)=0`
`<=> m^2-4m+3=0`
`<=>` \(\left[{}\begin{matrix}m=3\\m=1\end{matrix}\right.\)
Vậy `m \in {1;3}`.
\(x^2-\left(m-1\right)x-2=0\)
a=1; b=-m+1; c=-2
Vì a*c=-2<0
nên phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)
=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)
\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)
=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)
=>\(x_1^3-x_2^3=3x_1-3x_2\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)
=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)
=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)
=>\(\left(m-1\right)^2=1\)
=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)
CHÀO BẠN
Áp dụng Viét
- x1*x2=4m (1)
- x1+x2=2(m+1) (2)
(*) (x1+m)(x2+m)=3m^2+12
<=>x1*x2+m(x1+x2)=3m^2+12 (**)
thay (1);(2) vô (**) =>....
Mình bày hướng có chỗ nào sai tự sửa
Cho pt x²+(a-1)x-6=0 a) Giải pt với a =6 b) Tìm a để pt có 2 nghiệm x1,x2 thoả mãn x1²+x2²-3x1.x2=34
a: \(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
=>x=-6 hoặc x=1
a Khi m=-2 \(\Rightarrow x^2+\left(-2-2\right)x+-2+5=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) b Theo hệ thức Vi-et có :
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2-m\\x_1x_2=m+5\end{matrix}\right.\)
Mà \(\left(x_1+x_2\right)^2-2x_1x_2=x_1^2+x_2^2=10\Rightarrow\left(2-m\right)^2-2\left(m+5\right)=10\Leftrightarrow m^2-4m+4-2m-10=10\Leftrightarrow m^2-6m-16=0\Leftrightarrow m^2+2m-8m-16=0\Leftrightarrow\left(m+2\right)\left(m-8\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=8\end{matrix}\right.\)
a) Thay m=-2 vào phương trình, ta được:
\(x^2-4x+3=0\)
\(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: Khi m=-2 thì phương trình có hai nghiệm phân biệt là S={1;3}
Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)
\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)
Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)
\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)
Để pt có hai nghiệm phân biệt thì Δ' > 0
<=> ( m + 1 )2 - 2m - 2 > 0
<=> m2 + 2m + 1 - 2m - 2 > 0
<=> m2 - 1 > 0 => m > 1 hoặc m < -1
Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)
Khi đó x12 + x22 = 8
<=> ( x1 + x2 )2 - 2x1x2 = 8
<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0
<=> 4m2 + 4m - 8 = 0
<=> m2 + m - 2 = 0
<=> ( m - 1 )( m + 2 ) = 0
<=> m = 1 ( loại ) hoặc m = -2 (tm)
Vậy ...
\(x^2+2\left(m+1\right)+4m-4=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)
\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)
\(\Leftrightarrow4m^2+8m+4+4m-4=0\)
\(\Leftrightarrow4m^2+12m=0\)
\(\Leftrightarrow4m\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)