Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.
Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình ẩn m tham số C, ta có:
\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)
Để phương trình (2) có nghiệm thì:
\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)
\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)
\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)
Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)
Trả lời
a) Delta phương trình đó rồi xét 2 trường hợp
b) phần à delta lên sẽ tìm được m rồi thế vào là xong
Chắc vậy không chắc cho nắm
\(x^2-mx+m-1=0\)
nhận thấy:\(a+b+c=1-m+m-1=0\Rightarrow x_1=1;x_2=m-1\)
ta có\(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\)\(=\frac{2\left(m-1\right)+3}{1+\left(m-1\right)^2+2.\left(m-1+1\right)}\)\(=\frac{2m+1}{1+m^2-2m+1+2m}=\frac{2m+1}{m^2+2}\)
Nhân chéo 2 vế ta được:
\(Am^2+2A=2m+1\Leftrightarrow Am^2-2m+2A-1=0\)
\(\Delta'=1-\left(2A-1\right)A=-2A^2+A+1\)
Để A có GTNN và GTLN thì x phải có nghiệm\(\Rightarrow\Delta\ge0\)
\(\Leftrightarrow-2A^2+A+1\ge0\Leftrightarrow2A^2-A-1\le0\)
\(\Leftrightarrow2A^2-\frac{2\sqrt{2}}{2\sqrt{2}}A+\frac{1}{8}-\frac{9}{8}\le0\Leftrightarrow\left(\sqrt{2}A-\frac{1}{2\sqrt{2}}\right)^2\le\frac{9}{8}\)
\(\Leftrightarrow-\frac{3}{2\sqrt{2}}\le\sqrt{2}A-\frac{1}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\Leftrightarrow-\frac{2}{2\sqrt{2}}\le\sqrt{2}A\le\frac{4}{2\sqrt{2}}\)
\(\Leftrightarrow-\frac{2}{4}\le A\le\frac{4}{4}\Leftrightarrow-\frac{1}{2}\le A\le1\)
\(A=-\frac{1}{2}\Leftrightarrow x=1\)
\(A=1\Leftrightarrow x_1=1;x_2=0\)
bnj giải thích hộ mk cái chỗ 2A^2-\(\frac{2\sqrt{2}}{2\sqrt{2}}\)A+1/4-9/8 tại sao lại lấy \(\frac{2\sqrt{2}}{2\sqrt{2}}\)mà ko phải cái khác ,giải thích giùm nha!!!
\(\Delta'=m^2-2\left(m^2-2\right)=4-m^2\ge0\Rightarrow-2\le m\le2\)
Khi đó ta có \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=\frac{m^2-2}{2}\end{matrix}\right.\)
\(A=\frac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{m^2+1}{m^2+2}=1-\frac{1}{m^2+2}\)
Do \(0\le m^2\le4\Rightarrow\frac{1}{6}\le\frac{1}{m^2+2}\le\frac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}A_{min}=1-\frac{1}{2}=\frac{1}{2}\Rightarrow m=0\\A_{max}=1-\frac{1}{6}=\frac{5}{6}\Rightarrow m=\pm2\end{matrix}\right.\)
Có: \(\Delta=\left(m-2\right)^2\ge0\) => pt đã cho có nghiệm
Vi-et: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
\(C=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\frac{2m+1}{m^2+2}\)
đến đây xét delta ra min max..
Ta có \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)
=> PT luôn có 2 nghiệm x1;x2 với mọi m
Khi đó theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Khi đó: \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}\)
\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2+2}\)
\(B=\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+3}=\frac{2\left(m-1\right)3}{m^2+2}=\frac{2m+1}{m^2+2}\)
=> 2B+1=\(2\cdot\frac{2m+1}{m^2+2}+1=\frac{4m+2+m^2+2}{m^2+2}=\frac{m^2+4m+4}{m^2+2}=\frac{\left(m+2\right)^2}{m^2+2}\)
Ta có (m+2)2 >=0; m2+2>0
<=> 2B+1 >=0 <=> \(B\ge\frac{-1}{2}\)
Dấu "=" xảy ra <=> m=-2
Vậy MinB=\(\frac{-1}{2}\)đạt được khi m=-2
Câu 2:
\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}>0;\forall m\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4\left(m-1\right)^2-2\left(m-3\right)\)
\(=4m^2-10m+10=4\left(m-\frac{5}{4}\right)^2+\frac{15}{4}\ge\frac{15}{4}\)
\(\Rightarrow P_{min}=\frac{15}{4}\) khi \(m=\frac{5}{4}\)
Câu 1:
Để pt có 2 nghiệm \(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-2\right)^2-m\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\-m+4\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m\le4\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{2\left(m-2\right)}{m}\\x_1x_2=\frac{m-3}{m}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\frac{4\left(m-2\right)^2}{m^2}-\frac{2\left(m-3\right)}{m}=\frac{4m^2-8m+4}{m^2}-\frac{2m-6}{m}\)
\(=4-\frac{8}{m}+\frac{4}{m^2}-2+\frac{6}{m}=\frac{4}{m^2}-\frac{2}{m}+2\)
\(=4\left(\frac{1}{m}-\frac{1}{4}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(A_{min}=\frac{7}{4}\) khi \(\frac{1}{m}=\frac{1}{4}\Leftrightarrow m=4\)