Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ thấy trong tích A có 99 thừa số tức là có số thừa số là một số lẻ
Mặt khác : (1/2^2 - 1) < 0
(1/3^2 - 1) <0
.....
(1/100^2-1) < 0
vì tích a có số thừa số là số lẻ và các thừa số trong tích đều nhỏ hơn 0
Suy ra A<0
Mà 1/2 > 0
Suy ra A < 1/2
Theo mình thấy thì đề bài có vẻ ko đẹp lắm, nếu như đề bài cho 1 tích có số thừa số là số chẵn thì đẹp hơn bởi vì nó khó để phân tích
Chúc bạn học tốt...^^
Ta có: Q=(1-1/2^2).(1-1/3^2).....(1-1/40^2)
Q=3/2^2.8/3^2....1599/40^2
Q=(3/2.2).(8/3.3)...(1599/40.40)
Q=(1.3/2.2).(2.4/3.3)...(39.41/40.40)
Q=(1.2...39/2.3...40).(3.4...41/2.3...40)
Q=1/40.41/2
Q=41/80
Mà 41/80>40/80=1/2
=>Q > 1/2
\(Q=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{40^2}\right)\)
\(\Rightarrow Q=\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{9}{9}-\frac{1}{9}\right)...\left(\frac{1600}{1600}-\frac{1}{1600}\right)\)
\(\Rightarrow Q=\frac{3}{4}.\frac{8}{9}...\frac{1599}{1600}\)
\(\Rightarrow Q=\frac{1.3}{2.2}.\frac{2.4}{3.3}...\frac{39.41}{40.40}\)
\(\Rightarrow Q=\frac{\left(1.2.3...39\right)\left(3.4.5...41\right)}{\left(2.3.4...40\right)\left(2.3.4...40\right)}\)
\(\Rightarrow Q=\frac{41}{40.2}=\frac{41}{80}>\frac{40}{80}=\frac{1}{2}\)
Vậy \(Q>\frac{1}{2}\)
Bạn sai đè thì phải,đúng phải là 1/99
Ta thấy:Từ 1->1/100 có 100 số.
Ta có:100=1.100
Vì 1=1 ;1/2<1 ;1/3<1 ;1/4<1 ;... ;1/90<1 ;1/100<1.
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 1.100=100\)
\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}< 100\)
A có : 100 - 2 + 1 = 99 thừa số.
Tất cả thừa số của A đều âm.
=> A < 0 < \(\frac{1}{2}\)
\(M=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}\)
\(>1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1+\frac{1}{2}-\frac{1}{11}\)
\(>1+\frac{1}{2}-\frac{1}{6}=\frac{4}{3}\)
\(Q=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{40^2}\right)\)
\(=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)...\left(\frac{40^2-1}{40^2}\right)\)
\(=\frac{\left(2-1\right)\left(2+1\right)}{2^2}\frac{\left(3-1\right)\left(3+1\right)}{3^2}...\frac{\left(40-1\right)\left(40+1\right)}{40^2}\)
\(=\frac{1.3.2.4.3.5...39.41}{2^2.3^2.4^2...40^2}\)
\(=\frac{1.2.3...39}{2.3.4...40}.\frac{3.4.5...41}{2.3.4...40}=\frac{1}{40}.\frac{41}{2}=\frac{1}{2}.\frac{41}{40}\)
Mà \(41>40\Rightarrow\frac{41}{40}>1\Rightarrow\frac{1}{2}.\frac{41}{40}>\frac{1}{2}\Rightarrow A>\frac{1}{2}\)
Cảm ơn bạn nhé!!!