K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

S = 1 + 2 + 22 + ... + 29

=> 2S = 2 + 22 + ... + 210

=> 2S - S = 210 - 1

=> S = 210 - 1

Ta có : 210 = 22.28

=> 22.28 - 1 = 4.28 - 1 < 5.28

Vậy S < 5.28

14 tháng 7 2023

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8

\(S=2^0+2+2^2+...+2^9\)

Ta có phép tính : \(5\times28=140\)

Mà ta thấy : \(2^9>140\Rightarrow2^0+2+2^2+...+2^9>140\)

\(\Rightarrow S>5.28\)

26 tháng 7 2019

Ta có:

\(5.28=140\)

Mà \(2^9=512>140\)

\(\Rightarrow2^0+2^1+2^2+2^3+...+2^9>5.28\)

~ Rất vui vì giúp đc bn ~

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

14 tháng 10 2023

giúp e với ạ

gấp rút 

ai gửi đầu tiên e tim cho

14 tháng 10 2023

mik bt lm câu 1 thôi nha, bn thông cảm:

a = 2007.2009                              b = 20082

  =(2008 - 1)(2008 + 1)

  = 20082 - 1

Ta có, a = 20082 - 1, b = 20082

mà 20082 - 1 < 20082

=> a < b

10 tháng 9 2023

�=1+2+22+...+29

2�=2(1+2+22+...+210)

2�=2+22+23+...+29

2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

 

HT

11 tháng 9 2023

�=1+2+22+...+29

2�=2(1+2+22+...+210)

2�=2+22+23+...+29

2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

25 tháng 3 2017

S > 1/3

25 tháng 3 2017

ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)

thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)

vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)

14 tháng 3 2017

bít kq nhưng ko thích giải

18 tháng 12 2020

cậu ko giúp cậu ấy thì thôi đừng bảo như thế

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

29 tháng 6 2021

thank you

9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)