Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\dfrac{1}{50}+\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{98}+\dfrac{1}{99}\)
\(S=\dfrac{1}{50}>100\) \(\dfrac{1}{51}>100\) \(\dfrac{1}{52}>100\) \(....\) \(\dfrac{1}{98}>100\) \(\dfrac{1}{99}>100\)
\(\Rightarrow S>\dfrac{1}{100}+\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}+\dfrac{1}{100}\\ \) {50 số 100}
\(S>50\cdot\dfrac{1}{100}=\dfrac{1}{2}\)
\(S>\dfrac{1}{2}\)
ta co 1/50 >1/100
1/51>1/100
1/52>1/100
.........
1/99>1/100
suy ra S=1/50 +1/51 +1/52 +.....+1/99>1/100*50=1/2 suy ra S>1/2
https://www.youtube.com/watch?v=fBjsHQKClNA&index=7&list=PLq0mRSDfY0BAMTu98fNHi-Lg_E9BWDYhV
Easy mà =)))
Ta thấy: \(\frac{1}{50}>\frac{1}{100}\); \(\frac{1}{51}>\frac{1}{100}\);....;\(\frac{1}{99}>\frac{1}{100}\)
Mà từ 50 - 99 có 50 số nên ta có 50 phân số 100
Cộng theo từng vế,ta được:
\(S=\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}^{\left(đpcm\right)}\) (do có 50 phân số 1/100)
dãy trên có tất cả :(100-51):1+1=50 phân số
Ta có : 1/2:50=1/100
=>1/2=1/100+1/100+1/100+...+1/100(có tất cả 50 phân số 1/100)
Các phân số trong dãy S đều lớn hơn 1/100 ngoại trừ phân số cuối
=>dãy S >1/2
cac phan so 1/51;1/52;1/53;....1/99 đều lớn hơn 1/100. vậy S>1/100+1/100+....+1/100(co 50 phan so)=>S>50/100=1/2
ta thấy : 1/21>1/33;...1/30>1/33
Vậy 1/21+..+1/30>1/33+...+1/33(10 lần 1/33)
1/3=11/33
mà 1/33+..+1/33(10 lần 1/33) =10/33
Suy ra S>1/33+..+1/33(10 lần 1/33)>1/3
Vậy S>1/3
nhớ k nha bạn
Ta có: \(\frac{1}{50}\) >\(\frac{1}{100}\)
\(\frac{1}{51}\)>\(\frac{1}{100}\)
\(\frac{1}{52}\)>\(\frac{1}{100}\)
..................
\(\frac{1}{99}\)>\(\frac{1}{100}\)
=>\(\frac{1}{50}\)+\(\frac{1}{51}\)+.............+\(\frac{1}{99}\)>\(\frac{1}{100}\).50=\(\frac{1}{2}\)(50 là số số hạng của S nha)
=>S>\(\frac{1}{2}\)