Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
S= 5+52+53+...+52020+52021
5S=52+53+54+...+52021+52022
5S - S=4S=52022-5
Ta có: 4S+5=52022
=4S -5 +5 =52022
=> 4S=52022
1/5 S = 1+5+5^2+...+5^2012
=1(1+5+5^2)+5^3(1+5+5^2)+...+5^2010(1+5+5^2)
mà 1+5+5^2=31=>1+5+5^2 chia hết 31
=> mổi số hạng của 1/5 S chia hết 31
=> S chia hết 31
Học chuyên đó ak. bài zễ thế nài mà ko bt làm ntn hả
ta có : S=5+5^2+5^3+5^4+......+5^2013 ( có 2013 số hạng )
S=(5+5^2+5^3)+(5^4+5^5+5^6)+.............+(5^2011+5^2012+5^2013) ( có 671 nhóm)
S= 5.(1+5+5^2)+5^2.(1+5+5^2)+........+5^2011.(1+5+5^2)
S=(5+5^2+.....+5^2011).31
S chia hết cho 31
S= 5 + 52+53+...+52021
5S=52+53+54+...+52022
5S-S=52+53+...+52022-5-52-53-...-52021
4S=(52-52)+(53-53)+...+(52021-52021)+(52022-5)
4S=52022-5
=>4S+5=52022-5+5
=>4S+5=52022
Vậy 4S+5=52022
S = 3+ 32 + 33 + 34 +.....+ 32022
Xét dãy số : 1; 2; 3; 4; .....;2022
Dãy số trên có số số hạng : ( 2022 -1) : 1 + 1 = 2022 ( số hạng)
mà 2022 ⋮ 3
Vậy nhóm ba số hạng liên tiếp của tổng S thành một nhóm ta được:
S =(3 + 32+ 33)+ ( 34 + 35 + 36)+....+( 32020+32021+32022)
S = 3.( 1 + 3 + 32)+ 34.( 1+3+32)+....+32020.(1+3+32)
S = 3.13 + 34.13+ ......+32020.13
S = 13.( 3 + 34+....+32020)
13⋮ 13 ⇒ 13. ( 3+34+....+32020) ⋮ 13
⇒ S = 3+32+33+34+...+32022⋮13 (đpcm)
a) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+...+5^{97}.31\)
\(=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
b) \(S=5+5^2+5^3+5^4+...+5^{99}\)
\(=5+\left(5^2+5^3\right)+\left(5^4+5^5\right)+...+\left(5^{98}+5^{99}\right)\)
\(=5+5\left(5+5^2\right)+5^3\left(5+5^2\right)+...+5^{97}\left(5+5^2\right)\)
\(=5+5.30+5^3.30+...+5^{97}.30\)
\(=5+30.\left(5+5^3+...+5^{97}\right)\)
Mà \(5⋮̸30\) nên \(S⋮̸30\left(đpcm\right)\)
c) Ta có: \(5S=5^2+5^3+5^4+5^5+...+5^{100}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{100}\right)-\left(5+5^2+5^3+5^4+...+5^{99}\right)\)
\(4S=5^{100}-5\)
\(\Rightarrow25^x-5=5^{100}-5\)
\(\Rightarrow25^x=5^{100}\)
\(\Rightarrow25^x=25^{50}\)
\(\Rightarrow x=50\)
S = 5 + 52 + 53 +...+ 52020 + 52021
5S = 52+ 53 + 54 +...+ 52021 + 52022
5S-S =(52 + 53 + 54 + ... + 52021 + 52022)-(5 + 52 + 53 + ... + 52021)
4S = 52 + 53 + 54 +...+ 52021 + 52022 - 5 - 52 - 53 - ...- 52021
4S = (52 - 52)+(53- 53)+(54 - 54) + ... +(52021 - 52021)+(52022 - 5)
4S = 52022 - 5
4S + 5 = 52022 - 5 + 5
4S + 5 = 52022 (đpcm)
\(S=5+5^2+5^3+5^4+...+5^{2022}\)
\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+...+\left(5^{2021}+5^{2022}\right)\)
\(S=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+5^4\cdot\left(5+5^2\right)+...+5^{2020}\cdot\left(5+5^2\right)\)
\(S=\left(5+5^2\right)\left(1+5^2+5^4+...+5^{2020}\right)\)
\(S=30\left(1+5^2+5^4+...+5^{2020}\right)\)
Vậy S chia hết cho 30
S không thể chia hết cho 13 nhé