Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{3}{10}>\dfrac{3}{15}\)
\(\dfrac{3}{11}>\dfrac{3}{15}\)
\(\dfrac{3}{12}>\dfrac{3}{15}\)
\(\dfrac{3}{13}>\dfrac{3}{15}\)
\(\dfrac{3}{14}>\dfrac{3}{15}\)
Do đó: \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}=1\)
hay 1<S(1)
Ta có: \(\dfrac{3}{11}< \dfrac{3}{10}\)
\(\dfrac{3}{12}< \dfrac{3}{10}\)
\(\dfrac{3}{13}< \dfrac{3}{10}\)
\(\dfrac{3}{14}< \dfrac{3}{10}\)
Do đó: \(\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}=\dfrac{12}{10}\)
\(\Leftrightarrow S< \dfrac{15}{10}=\dfrac{3}{2}< 2\)(2)
Từ (1) và (2) suy ra 1<S<2(đpcm)
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
\(S=\left(\dfrac{3}{10}+\dfrac{3}{12}+\dfrac{3}{14}\right)+\left(\dfrac{3}{11}+\dfrac{3}{13}\right)\)
Đến bước trên thì do mình lười đánh máy nên bạn tính trong ngoặc bằng máy tính thì sẽ ra kết quả dưới đây (làm tắt):
\(S=\dfrac{107}{140}+\dfrac{72}{143}\)
Bước này phải quy đồng nhé! Ra số hơi dài nhưng phải chịu thôi bạn!
\(S=1,267782218\)
Mà \(1< 1,267782218< 2\)
Suy ra \(1< S< 2\)
Suy ra Điều phải chứng minh.
Xong rồi bạn, tick ''Đúng'' cho mình nhé!
Bạn ghi lộn đề rồi: mẫu số á phải là: 10+11+12+13+14 chứ 13 bạn không có nha!
Ta có: 3/15+3/15+3/15+3/15+3/15<3/10+3/11+3/12+3/13+3/14<3/9+3/9+3/9+3/9+3/9
Suy ra: 15/15<S<15/9
15/1<S<5/3
Vì: 5/3<2
Suy ra: 1<S<2
*Nhớ tick cho mình nha cảm ơn bạn nhiều!!!!
Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
= 1/2-1/3+1/3-1/4+...+1/10-1/11
= 1/2 - 1/11 = 9/22 (đpcm)
a, Ta có :
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)
a) Giải:
Ta có: \(4n-5=4\left(n-3\right)+7\)
Để \(\left(4n-5\right)⋮\left(n-3\right)\Leftrightarrow7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)\in\left\{\pm1;\pm7\right\}\)
Nên ta có bảng sau:
\(n-3\) | \(n\) |
\(1\) | \(4\) |
\(-1\) | \(2\) |
\(-7\) | \(-4\) |
\(7\) | \(10\) |
Vậy \(n=\left\{2;4;-4;10\right\}\)
b) Ta có:
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét:
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Vậy \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\) \(< \dfrac{1}{2}\) (Đpcm)
Để chứng minh 3<S<6, ta cần tính giá trị của biểu thức S và thấy xem nó có nằm trong khoảng (3, 6) hay không.
Đầu tiên, ta tính tổng S bằng cách đặt S bên cạnh tổng harmonic thứ 63, rồi trừ đi tổng harmonic thứ 62:
S = 1/1 + 1/2 + 1/3 + ... + 1/63 S - 1/2 = 1/2 + 1/3 + ... + 1/63
Lặp lại phương pháp trên đối với S - 1/2, ta có:
S - 1/2 - 1/3 = 1/3 + ... + 1/63
Cứ lặp lại phương pháp trên đến khi ta được:
S - 1/2 - 1/3 - ... - 1/62 = 1/63
Tổng quát lại, ta có:
S - 1/2 - 1/3 - ... - 1/62 - 1/63 = 0
Từ đây suy ra:
3/2 < 1/2 + 1/3 + ... + 1/62 + 1/63 < 1 + 1/2 + 1/3 + ... + 1/62 < 6
Vì vậy, ta có:
3 < S < 6
Vậy, ta đã chứng minh được rằng 3<S<6.
Đặt \(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{60}\right)+...+\frac{1}{70}\)
Nhận xét:
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)
\(\Rightarrow A>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}+...+\frac{1}{70}>\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}\)
\(\Rightarrow A>\frac{4}{3}\)
Vậy \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}>\frac{4}{3}\) (Đpcm)
\(A=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+....+\dfrac{1}{70}\\ =\left(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\right)+\left(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{30}\right)+\left(\dfrac{1}{30}+\dfrac{1}{31}+....+\dfrac{1}{60}\right)+....+\dfrac{1}{70}\\ \)
\(\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}=\dfrac{1}{2}\)
\(\dfrac{1}{21}+\dfrac{1}{22}+\dfrac{1}{23}+....+\dfrac{1}{30}>\dfrac{1}{30}+\dfrac{1}{30}+....+\dfrac{1}{30}=\dfrac{10}{30}=\dfrac{1}{3}\)
\(\dfrac{1}{30}+\dfrac{1}{31}+....+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{30}{60}=\dfrac{1}{2}\)
\(\Rightarrow A>\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{1}{61}+...+\dfrac{1}{70}>\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{4}{3}\)
Chúc bạn học tốt !!!!!!
`S=1/19+1/19^2+1/19^3+........+1/19^20`
`=>19S=1+1/19+1/19^2+.....+1/19^19`
`=>19S-S=18S=1-1/19^20<1`
`=>S<1/18(đpcm)`
Giải:
S=\(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\)
19S=\(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\)
19S-S=\(\left(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\right)-\left(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\right)\)
18S=1-\(\dfrac{1}{19^{10}}\)
S=(1-\(\dfrac{1}{19^{10}}\) ):18
S=\(1:18-\dfrac{1}{19^{10}}:18\)
S=\(\dfrac{1}{18}-\dfrac{1}{19^{10}.18}\)
⇒S<\(\dfrac{1}{18}\) (đpcm)
Chúc bạn học tốt!
2)
S = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\)
S = 3 . (\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\))
S = 1 . (\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{43.46}\))
S = 1 . (\(1-\dfrac{1}{4}+...+\dfrac{1}{43}-\dfrac{1}{46}\))
S = 1 . (\(1-\dfrac{1}{46}\))
S = 1 . \(\dfrac{45}{46}\)
S = \(\dfrac{45}{46}\)
=> \(\dfrac{45}{46}\) < 1
Ta thấy :
\(\dfrac{3}{10}>\dfrac{3}{15}\)
\(\dfrac{3}{11}>\dfrac{3}{15}\)
\(\dfrac{3}{12}>\dfrac{3}{15}\)
\(\dfrac{3}{13}>\dfrac{3}{15}\)
\(\dfrac{3}{14}>\dfrac{3}{15}\)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>5.\dfrac{3}{15}\) (1)
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{1}{14}>1\)
Ta có:
\(\dfrac{3}{10}< \dfrac{3}{9}\)
\(\dfrac{3}{11}< \dfrac{3}{9}\)
\(\dfrac{3}{12}< \dfrac{3}{9}\)
\(\dfrac{3}{13}< \dfrac{3}{9}\)
\(\dfrac{3}{14}< \dfrac{3}{9}\)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< 5.\dfrac{3}{9}\)
\(\Rightarrow S< \dfrac{5}{3}< 2\)
giải s ta có s=1.267782218 thì lớn hơn 1 và nhỏ hơn 2