Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=1+3+(3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9)+...+(3^{46}+3^{47}+3^{48}+3^{49})\)
\(=4+3^2(1+3+3^2+3^3)+3^6(1+3+3^2+3^3)+....+3^{46}(1+3+3^2+3^3)\)
\(=4+3^2.40+3^6.40+....+3^{46}.40\)
\(=10(4.3^2+4.3^6+..+4.3^{46})+4\)
Vậy $A$ có tận cùng là $4$
a.S=3+32...+3100
=(3+32)+...+(399+3100)
=3(1+3)+...+399(1+3)
=3.4+...+399.4
=4(3+...+399)\(⋮\)4
a) Ta có: A gồm có 2008 số hạng, 2008:4=52. Nhóm 4 số hạng liên tiếp với nhau được 52 nhóm như sau:
S=5(1+5+52+53)+55(1+5+52+53)+...+52005(1+5+52+53)=156(5+55+59+....+52005)
Vậy S chia hết cho 156
b) Ta có:
S=156(5+55+59+....+52005) .
Trong ngoặc gồm 52 số hạng có tận cùng là 5=> phần trong ngoặc có số tận cùng là 0
Vậy S có tận cùng là 0
Rut gon: S= 2+2^2+2^3+.................. + 2^100
\(\Rightarrow\) 2S= 2 ( 2+2^2+2^3+.................. + 2^100 )
2S= 2^2+2^3+.................. + 2^101
2S-S= 2^101-2
bạn trả lời giúp mình câu hỏi này với , mình đang rất gấp , đè bài y như thế này
ta co: S=1+3+32+33+...+348+349
S=(1+3)+(32+33)+...+(348+349)
S=4+32.(1+3)+...+348.(1+3)
S=4+4.(32+...+348)
Vi 4 chia het cho 4
=>S chia het cho 4