Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dư của abcd cho 5 là n(0<n<5)
Ta có: abcd=5k+n(k thuộc N)
=> abc.10+d=5k+n
=> abc.2.5+d-n=0
=> (abc.2.5-5k)+(d-n)=0
=> d-n=0-(abc.2.5-5k)
=> d-n=5k-abc.2.5
=> d-n=5.(k-abcd) chia hết cho 5
=> d-n chia hết cho 5.
=> d:5 (dư n)
Bạn vào đây tham khảo nhé :
https://olm.vn/hoi-dap/question/127109.html
theo bạn biết thì abcd = abc0 +d ;abc0 chia hết cho 5; dchia 5 bàn mấy thì abcd chia 5 bằng mấy
vd : 2469 chia 5du 4 =2460+9 :;2460 chia het cho 5; 9chia 5 du 4=> dpcm
K NHA
Gọi số dư của abcd cho 5 là n(0<n<5)
Ta có: abcd=5k+n(k thuộc N)
=> abc.10+d=5k+n
=> abc.2.5+d-n=0
=> (abc.2.5-5k)+(d-n)=0
=> d-n=0-(abc.2.5-5k)
=> d-n=5k-abc.2.5
=> d-n=5.(k-abcd) chia hết cho 5
=> d-n chia hết cho 5.
=> d:5 (dư n)
=>ĐPCM
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Gọi số dư chia cho 5 là n \(( 0 < n <5 )\)
Gọi d là số chia cho 5.
Ta có:
\(abcd=5k+n\) ( k thuộc N )
\(\Rightarrow abc.10+d=5k+n\)
\(\Rightarrow abc.2.5+d-n=0\)
\(\Rightarrow\left(abc.2.5-5k\right)+\left(d-n\right)=0\)
\(\Rightarrow d-n=0-\left(abc.2.5-5k\right)\)
\(\Rightarrow d-n=5k-abc.3.5\)
\(\Rightarrow d-n=5.\left(k-abcd\right)\) chia hết cho 5.
\(\Rightarrow d-n\) chia hết cho 5.
\(\Rightarrow d:5\) dư n.
làm hộ mk với