K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2020

Bài làm:

Vì n và 40 là 2 SNT cùng nhau => n và 10 là 2 SNT cùng nhau

=> n sẽ không chia hết cho 2 hoặc 5

=> n là số lẻ

Đặt n = 2k+1 (k là số tự nhiên)

=> n4-1 = (n2-1)(n2+1) = (n-1)(n+1)(n2+1)

Thay n = 2k+1 vô ta được: (2k+1-1)(2k+1+1)(4k2+4k+1+1)

= 2k(2k+2)(4k2+4k+2)

= 8k(k+1)(2k2+2k+1) chia hết cho 8

=> n4-1 chia hết cho 8 (1)

Ta lại đặt n = 5k+1 (k lẻ)

=> n4-1 = (n+1)(n-1)(n2+1) = (5k+1-1)(5k+1+1)(25k2+10k+1)

= 5k(5k+2)(25k2+10k+1) chia hết cho 5

=> n4-1 chia hết cho 5 (2)

Từ (1) và (2) => \(n^4-1⋮8.5=40\)

Vậy \(n^4-1⋮40\)

Mk k chắc bài mk làm đúng nhé!

7 tháng 2 2020

Ta có: \(A=6n^2+5n+1=\left(3n+1\right)\left(2n+1\right)\)là số chính phương.

\(\Rightarrow3n+1,2n+1\)là số chính phương.

\(\Rightarrow3n+1=x^2;2n+1=y^2\)

\(\Rightarrow y\)lẻ.

\(\Rightarrow y=2k+1\Rightarrow2n+1=\left(2k+1\right)^2\Rightarrow n=2k\left(k+1\right)\)

\(\Rightarrow n\)chẵn.

\(\Rightarrow3n+1\) lẻ 

\(\Rightarrow x\)lẻ.

\(\Rightarrow n=x^2-y^2⋮8\)

Lại có: \(x^2+y^2=5n+2\) chia \(5\)dư \(2\)

Vì số chính phương chia \(5\)dư \(0,1,4\)

\(\Rightarrow x^2,y^2\)chia \(5\)dư \(1\)

\(\Rightarrow x^2-y^2⋮5\)

\(\Rightarrow n⋮5\)

\(\Rightarrow n⋮5.8=40\left(đpcm\right)\)

27 tháng 5 2021

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

27 tháng 5 2021

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....

2 tháng 10 2023

Ta có: \(n^5+n^4+1\)

\(=n^5-n^3+n^2+n^4-n^2+n+n^3-n+1\)

\(=n^2\left(n^3-n+1\right)+n\left(n^3-n+1\right)+\left(n^3-n+1\right)\)

\(=\left(n^3-n+1\right)\left(n^2+n+1\right)\) 

Do \(n^5+n^4+1\) là số nguyên tố nên: \(\left[{}\begin{matrix}n^3-n+1=1\\n^2+n+1=1\end{matrix}\right.\)  trong hai số phải có 1 số là 1 và số còn lại là số nguyên tố:

TH1: \(n^3-n+1=1\)

\(\Leftrightarrow n^3-n=0\)

\(\Leftrightarrow n\left(n^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=1\\n=-1\end{matrix}\right.\)

Với 

\(n=0\Rightarrow0^5+0^4+1=1\) (loại)

\(n=1\Rightarrow1^5+1^4+1=3\) (nhận)

\(n=-1\Rightarrow\left(-1\right)^5+\left(-1\right)^4+1=1\) (loại)

TH1: \(n^2+n+1=1\)

\(\Leftrightarrow n^2+n=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-1\end{matrix}\right.\left(\text{loại}\right)\)

Vậy \(n=1\) là số thỏa mãn để \(n^5+n^4+1\) là số nguyên tố