K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

pro rồi thì bạn cần gì mình giải nhỉ

??

NV
5 tháng 5 2021

\(A=x-2y+3\Rightarrow x=A+2y-3\)

\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)

\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)

\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)

\(\Leftrightarrow-7A^2+42A-31\ge0\)

\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)

12 tháng 4 2017

ta có:

\(x+2y=3\Leftrightarrow x=3-2y\)

thay vào P, ta có:

\(P=\left(3-2y\right)^2+5y^2\)

\(P=\left(3y-2\right)^2+5\)

\(\Rightarrow P\ge5\)(dấu xảy ra dấu "="\(\Leftrightarrow x=y=\frac{2}{3}\))

30 tháng 7 2019

pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)

\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)

\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)

\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)

Dấu "=" tự xét nhé 

13 tháng 11 2019

\(x=1-2y\)

=> \(P=\left(1-2y\right)y=-2y^2+y\) không có giá trị nhỏ nhất.

10 tháng 7 2021

Nguyễn Linh Chi chắc đề là tìm Max cô ạ=( cô off lâu quá=(

Từ x + 2y = 1 => x = 1 - 2y

Ta có : P = xy = ( 1 - 2y )y = -2y2 + y = -2( y2 - 1/2y + 1/16 ) +1/8

= -2( y - 1/4 )2 + 1/8 ≤ 1/8

hay P ≤ 1/8 . Dấu "=" xảy ra <=> x = 1/2 ; y = 1/4

Vậy ...

25 tháng 5 2019

Áp dụng BĐT Cauchy=Schwarz ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\Rightarrow x+y+z\le\sqrt{3}\)

Ta lại có:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow A\le\sqrt{3}+1\)

Dấu '=' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

29 tháng 5 2019

Em làm lại,cách này mà còn sai nữa thì em xin hàng ạ! Dù sao đi nữa cũng xin mọi người chịu khó góp ý giúp em để em càng ngày càng tiến bộ hơn nữa ạ! Thanks all !

*Tìm min

Đặt p = x + y + z; q = xy + yz + zx thì \(x^2+y^2+z^2=p^2-2q=1\Rightarrow q=\frac{p^2-1}{2}\)

Suy ra \(A=p+q=p+\frac{p^2-1}{2}=\frac{p^2+2p-1}{2}\)

\(=\frac{p^2+2p+1-2}{2}=\frac{\left(p+1\right)^2-2}{2}\ge-\frac{2}{2}=-1\)

Vậy giá trị nhỏ nhất của A là -1.

Dấu "=" xảy ra khi (x;y;z) = (0;0;-1) (chỗ này em không biết giải rõ thế nào nữa :v)

*Tìm max

Ta có BĐT sau: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\le x^2+y^2+z^2\)

Suy ra \(q\le\frac{p^2}{3}\le p^2-2q=1\) suy ra \(\hept{\begin{cases}q\le p^2-2q=1\\p^2\le3\left(p^2-2q\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}q\le1\\p\le\sqrt{3\left(p^2-2q\right)}=\sqrt{3}\end{cases}}\)

Suy ra \(A=p+q\le\sqrt{3}+1\)