Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tách mẫu ra như sau:
\(T=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+..\)
Đó cứ vậy nhé
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
A=1/20+1/30+1/42+1/56+1/72+1/90
A=1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10
A=1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
A=1/4-1/10
A=3/20
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{72}+\dfrac{1}{90}\)
\(=\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{3}-\dfrac{1}{10}\)
`=7/30`
a: \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^7\)
=>\(2\cdot A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^6\)
=>\(2A-A=1-\left(\dfrac{1}{2}\right)^7=1-\dfrac{1}{128}=\dfrac{127}{128}\)
=>\(A=\dfrac{127}{128}\)
b: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)
ta có : t = 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/98.99 + 1/99.100
=> t = 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100
=> t = 1 - 1/100
=> t = 99/100
T=1/1x2+1/2x3+1/3x4+....................+1/98x99+1/99x100
T=1-1/2+1/2-1/3+..............+1/98-1/99+1/99-1/100
T=1-1/100
T=99/100
=> (1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9 + 1/9.10) : x = 9/20
=> (1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9 + 1/9 - 1/10) : x = 9/20
=> (1 - 1/10) : x = 9/20
=> 9/10 : x = 9/20
X = 9/10 : 9/20 = 2