Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5: Cho tam giác ABC có ba góc nhọn, AB<AC. Kẻ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE. So sánh độ dài HB và HC.
Bài 6: Cho tam giác ABC có AB<AC. Tia phân giác của góc B và C cắt nhau tại I. Từ I vẽ IH vuông góc với BC. So sánh độ dài HB và HC.
Dễ mà :
Gợi ý ta sẽ áp dụng hệ quả là : Trong một tam giác vuông thì Cạnh huyền luôn lớn hơn Cạnh góc vuông
Giải
a , Xét \(\Delta BAD\)và \(\Delta BED\)có :
AB = BE ( gt )
BD chung
\(\widehat{ABD}=\widehat{DBE}\)( BD là đường phân giác \(\widehat{B}\))
\(\Rightarrow\text{}\text{}\text{}\text{}\text{}\text{}\Delta ABD=\Delta BDE\left(c.g.c\right)\)
b , Có \(\Delta ABD=\Delta BDE\)
\(\Rightarrow\widehat{E}=\widehat{A}=90^0\)( 2 góc tương ứng )
Ta có : \(\hept{\begin{cases}\widehat{AFD}+\widehat{ADF}=90^0\\\widehat{ECD}+\widehat{EDC}=90^0\\\widehat{ADF}=\widehat{EDC}\left(đđ\right)\end{cases}}\)
\(\Rightarrow\widehat{AFD}=\widehat{DCE}\)
Xét \(\Delta ADF\)vuông tại A và \(\Delta EDC\)vuông tại E có :
\(\hept{\begin{cases}\text{ AF = EC ( gt )}\\\widehat{AFD\: }=\widehat{DCE}\left(cmt\right)\end{cases}\Rightarrow\Delta ADF=\Delta EDC\left(cgv.gn\right)}\)
\(\Rightarrow DF=DC\)( 2 cạnh tương ứng )
c , Có \(D\in AC\)( BD cắt AC tại D )
\(\widehat{EDC}+\widehat{ADE}=180^0\)
Mà \(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{ADF}+\widehat{ADE}=180^0\)
\(\Rightarrow\widehat{EDF}=180^0\)
\(\Rightarrow\)E , D , F cùng nằm trên 1 đường thẳng .
3b)
Ta có tg BNK vuông tại K ->BN>BK
Ta có IK=MN(tính chất đoạn chắn)
Ta có : BC+MN=BK+KC+MN=BK+BI+IK=2BK
Vì BK<BN->2BK<2BN->BN>BK/2->BN>BC+MN/2
a: BD=4cm
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
=>AH vuông góc với BC tại H
mà ΔACB cân tại A
nên AH vuông góc với BC tại trung điểm của BC
Xét tứ giác AEID có
\(\widehat{AEI}+\widehat{ADI}+\widehat{EAD}+\widehat{EID}=360^0\)
=>\(\widehat{EAD}+\widehat{EID}+90^0+90^0=360^0\)
=>\(\widehat{EAD}+\widehat{EID}=360^0-180^0=180^0\)
mà \(\widehat{EID}=\widehat{BIC}\)(hai góc đối đỉnh)
nên \(\widehat{EAD}+\widehat{BIC}=180^0\)
=>góc BIC bù với góc BAC