Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có
goc BAD+ goc DAC =90 (2 góc kề phụ)
goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)
goc DAC=goc HAD (AD lả p/g goc HAC)
==> góc BAD= goc ADB
-> tam giac BAD cân tại B
b) xet tam giac ADH và tam giac ADE ta có
AD= AD ( cạnh chung)
goc HAD = goc DAC ( AD là p/g goc HAC)
goc AID = góc AIE (=90)
--> tam giac ADH= tam giac ADE (g-c-g)
-< AH= AE ( 2 canh tương ứng)
Xét tam giac AHD và tam giac AED ta có
AD=AD ( cạnh chung)
AH=AE (cmt)
goc DAH= goc DAE ( AD là p/g HAC)
-> tam giac AHD= tam giac AED ( c-g-c)
-> goc AHD= goc AED ( 2 góc tương ứng
mà góc AHD = 90 ( AH vuông góc BC)
nên AED =90
-> DE vuông góc AC
c) Xét tam giac ABH vuông tại H ta có
AB2= AH2+BH2 ( dly pi ta go)
152=122+BH2
BH2 =152-122=81
BH=9
ta có BA=BD ( tam giác ABD cân tại B)
BA=15 cm (gt)
-> BD=15
mà BH+HD=BD ( H thuộc BD)
nên 9+HD=15
HD=15-9=6
Xét tam giác ADH vuông tại H ta có
AD2=AH2+HD2 ( định lý pitago)
AD2=122+62=180
-> AD=\(\sqrt{180}=6\sqrt{5}\)
a) Vì BD = BA nên ΔΔBAD cân tại B
=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm
b) Ta có: góc BAD + g DAC = 90o
=> g DAC = 90o - g BAD (1)
Áp dụng tc tam giác vuông ta có:
g HAD + g BDA = 90o
=> g HAD = 90o - g BDA (2)
mà góc BAD = g BDA (câu a)
=> gDAC = g HAD
=> AD là tia pg của g HAC.
c) Áp dụng tc tổng 3 góc trong 1 tg ta có:
g AHD + g HDA + g HAD = 180o
=> 90o + g HDA + g HAD = 180o
=> g HDA + g HAD = 90o (3)
g DAC + g DKA + g ADK = 180o
=> g DAC + 90o + g ADK = 180o
=> g DAC + g ADK = 90o (4)
mà gDAC = g HAD hay gDAK = gHAD
Xét tgHAD và tgKAD có:
g HDA = g ADK (c/m trên)
AD chung
g HAD = g DAK (c/m trên)
=> tgHAD = tgKAD (g.c.g)
=> AH = AK (2 cạnh t/ư)
đề bài của bạn hình như ko đúng lắm. tưởng phải cân ở đỉnh A chứ
Bài làm:
a, Áp dụng đl Pythagoras vào ∆ABC vuông tại A có
BC² = AB² + AC²
=> BC² = 6² + 8²
=> BC² = 100
=> BC = √100 = 10(cm) (do BC> 0)
b, Ta có DH ⊥ BC (gt)
=> BHD = CHD = 90°
Xét ∆ABD vuông tại A và ∆HBD vuông tại H có
BD : chung
ABD = CBD (BD là pg ABC - gt)
=>∆ABD = ∆HBD (ch-gn)
=> AD = DH (2 cạnh t/ứ)
c, Xét ∆DHC vuông tại H có
DC > HD (ch > cgv)
Mà HD = AD (cmt)
=> DC > AD
d, Ta có BAC +KAC = 180° (kề bù)
=> 90° + KAC = 180°
=> KAC = 90°
Lại có : KB = BC (gt)
AB = BH (∆ABD = ∆HBD)
=> KB - AB = BC - BH
=> AK = CH
Xét ∆AKD vuông tại A và ∆HCD vuông tại H có
AK = CH (cmt)
AD = HD (cmt)
=>∆AKD = ∆HCD (2 cgv)
=> ADK = HDC (2 góc t/ứ)
Mặt khác ta có
ADH + HDC = 180° (kề bù)
=> ADK + ADH = 180°
=> KDH = 180°
=> K,D,H thẳng hàng